(2009•張家界)如圖,⊙O是△ABC的內(nèi)切圓,與邊BC,CA,AB的切點(diǎn)分別為D,E,F(xiàn),若∠A=70°,則∠EDF=    度.
【答案】分析:根據(jù)切線的性質(zhì)定理以及四邊形的內(nèi)角和定理,得∠EOF=110°.再根據(jù)圓周角定理可得出∠EDF=55°.
解答:解:連接OE,OF,
∵∠A=70°,邊BC,CA,AB的切點(diǎn)分別為D,E,F(xiàn)
∴∠EOF=180°-70°=110°,
∴∠EDF=55°.
點(diǎn)評(píng):此題綜合運(yùn)用了四邊形的內(nèi)角和定理、切線的性質(zhì)定理以及圓周角定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•張家界)在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(-1,0),請(qǐng)按要求畫圖與作答.
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C′.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C′與△A″B″C″是否成中心對(duì)稱,若是,找出對(duì)稱中心P′,并寫出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省成都市石室錦城外國(guó)語(yǔ)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

(2009•張家界)將函數(shù)y=-3x+3的圖象向上平移2個(gè)單位,得到函數(shù)    的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省張家界市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•張家界)在平面直角坐標(biāo)系中,已知A(-4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案