【題目】(本題滿分8分)如圖,南北方向線MN以西為我國領(lǐng)海,以東為公海.上午9時(shí)50分,我緝私艇A發(fā)現(xiàn)正東方向有一走私艇C以13海里/時(shí)的速度偷偷向我領(lǐng)海駛來,便立即通知正在MN線上巡邏的緝私艇B.已知A,C兩艇的距離是13海里,A,B兩艇的距離是5海里,緝私艇B與C艇的距離是12海里,若C艇的速度不變,那么它最早會(huì)在什么時(shí)間進(jìn)入我國領(lǐng)海?
【答案】走私艇C最早會(huì)在11時(shí)50分進(jìn)入我國領(lǐng)海
【解析】
試題先判斷出△ABC的形狀,再根據(jù)射影定理求出CE的長,由走私艇C的速度即可得出此艇進(jìn)入我國領(lǐng)海的時(shí)間.
試題解析:如圖:
∵122+162=202,即AB2+BC2=202,
∴△ABC是直角三角形,
∵∠C=∠C,∠ABC=∠BEC=90°,
∴△BCE∽△ACB,
∴,
∴BC2=CEAC,即162=20CE,解得CE=12.8(海里),
∴t==2(小時(shí)).
∵上午9時(shí)50分,我反走私A艇發(fā)現(xiàn)正東方向有一走私艇C以每小時(shí)6.4海里的速度偷偷向我領(lǐng)海開來
∴走私艇C最早會(huì)在11時(shí)50分進(jìn)入我國領(lǐng)海.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是﹣2,點(diǎn)B表示+6,P、Q兩點(diǎn)同時(shí)分別以1個(gè)單位/秒和3個(gè)單位/秒的速度從A、B兩點(diǎn)出發(fā),沿?cái)?shù)軸規(guī)則運(yùn)動(dòng)
(1)求線段AB的長度;
(2)如果P、Q兩點(diǎn)在數(shù)軸上相向移動(dòng),問幾秒鐘后PQ=AB?
(3)如果P、Q兩點(diǎn)在數(shù)軸上同時(shí)沿?cái)?shù)軸負(fù)半軸方向移動(dòng)(Q在P的左側(cè)),若M、N分別是PA和BQ中點(diǎn),問是否存在這樣的時(shí)間t,使得線段MN=AB?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,點(diǎn)D,E分別在邊BC、AC上,若CD=2,過點(diǎn)D作DE∥AB,過點(diǎn)E作EF⊥DE,交BC的延長線于點(diǎn)F,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣ x+sinα=0有兩個(gè)相等的實(shí)數(shù)根,則銳角α等于( 。
A.15°
B.30°
C.45°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B、C、D、E在同一直線上,且AC=BD,E是線段BC的中點(diǎn).
(1)點(diǎn)E是線段AD的中點(diǎn)嗎?說明理由;
(2)當(dāng)AD=10,AB=3時(shí),求線段BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN= AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于3 時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)如圖,在圖1所給方格紙中,每個(gè)小正方形邊長都是1,標(biāo)號(hào)為①②③的三個(gè)三角形均為格點(diǎn)三角形(頂點(diǎn)在方格頂點(diǎn)處),請(qǐng)按要求將圖2中的指定圖形分割成三個(gè)三角形,使它們與標(biāo)號(hào)為①②③的三個(gè)三角形分別對(duì)應(yīng)全等.(分割線畫成實(shí)線.)
(2)如圖3,在長度為1個(gè)單位長度的小正方形組成的正方形網(wǎng)格中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
①在圖中畫出與△ABC關(guān)于直線L成軸對(duì)稱的 ;
②請(qǐng)直線L上找到一點(diǎn)P,使得PC + PB的距離之和最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com