【題目】如圖,在△ABC中,AB=AC,點D、EF分別在BC、AB、AC邊上,且BE=CF, BD=CE.

1)求證:△DEF是等腰三角形;

2)當∠A=40°時,求∠DEF的度數(shù);

3△DEF可能是等腰直角三角形嗎?為什么?

【答案】(1)證明見試題解析;(270°;(3)不可能,理由見試題解析.

【解析】試題分析:(1)根據AD+EC=AB=AD+DB得出EC=DB,根據AB=AC得出∠B=∠C,結合BE=CF得出△BED△ECF全等,從而得出答案;(2)根據∠A的度數(shù)以及等腰三角形的性質得出∠B∠C的度數(shù),根據三角形全等得出∠DEF的度數(shù);(3)當△DEF為等腰直角三角形時則∠DEF=90°,從而得出∠DEB+∠BDE=90°,則∠B=90°,得出與三角形內角和為180°相矛盾得出答案.

試題解析:(1∵ADECABADDB,∴ECDB

ABAC

∴∠B∠C

BECF

∴△BED≌△ECF

∴DEEF

∴△DEF是等腰三角形

2∵∠A40°∴∠B∠C70°由(1)知∠BDE∠FEC

∴∠DEF∠B70°

3)若△DEF是等腰直角三角形,則∠DEF90°

∴∠DEB∠BDE90°,

∴∠B90°因而∠C90°

∴△DEF不可能是等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】【問題背景】

(1)如圖1的圖形我們把它稱為“8字形”,請說明;

【簡單應用】

(2)閱讀下面的內容,并解決后面的問題:如圖2, AP、CP分別平分∠BAD. BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù);

解:∵APCP分別平分∠BAD. BCD

∴∠1=∠2,∠3=∠4

由(1)的結論得:

①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+D

∴∠P = (∠B+D)=26°.

【問題探究】如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想的度數(shù),并說明理由.

【拓展延伸】

① 在圖4中,若設∠C=α,∠B=β,∠CAP=CAB,∠CDP=CDB,試問∠P與∠C、∠B之間的數(shù)量關系為:________________(用α、β表示∠P),

②在圖5中,AP平分∠BADCP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關系,直接寫出結論______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于受到手機更新?lián)Q代的影響,某手機店經銷的華為P10 plus手機四月售價比三月每臺降價500元.如果賣出相同數(shù)量的華為P10 plus手機,那么三月銷售額為9萬元,四月銷售額只有8萬元.

(1)三月華為P10 plus手機每臺售價為多少元?

(2)為了提高利潤,該店計劃五月購進華為P20 pro手機銷售,已知華為P10 plus每臺進價為3500元,華為P20 pro每臺進價為4000元,預計用不多于7.6萬元且不少于7.4萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?

(3)該店計劃六月對華為P10 plus的尾貨進行銷售,決定在四月售價基礎上每售出一臺華為P10 plus手機再返還顧客現(xiàn)金元,而華為P20 pro按銷售價4400元銷售,如要使(2)中所有方案獲利相同,應取何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,對于任意三點A,B,C矩面積,給出如下定義:水平底”a:任意兩點橫坐標差的最大值,鉛垂高”h:任意兩點縱坐標差的最大值,則矩面積”S=ah.例如,三點坐標分別為A03),B-34),C1,-2),則水平底”a=4,鉛垂高”h=6,矩面積”S=ah=24.若D22),E-2-1),F3m)三點的矩面積20,則m的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,等邊ABC中,點DE分別在BC、AC上,BD=CE,連AD、BE

1)求證:CAD≌△ABE

2)如圖2,延長FE至點G,使得FG=FA,連AG,試判斷AFG的形狀,并說明理由;

3)在(2)的條件下,連CF,若CFAD,求證:CFCG

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B,C的坐標分別為Aa,3),Bb,6),Cm+6,1),且ab滿足

1)請用含m的式子表示AB兩點的坐標;

2)如圖,點A在第二象限,點B在第一象限,連接A、BC、O四點;

①若點By軸的距離不小于點Ay軸距離的2倍,試求m的取值范圍;

②若三角形AOC的面積等于三角形ABC面積的,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】經過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉或向右轉,如果這三種情況是等可能的,當三輛汽車經過這個十字路口時:

1)求三輛車全部同向而行的概率;

2)求至少有兩輛車向左轉的概率;

3)由于十字路口右拐彎處是通往新建經濟開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時段對車流量作了統(tǒng)計,發(fā)現(xiàn)汽車在此十字路口向右轉的頻率為,向左轉和直行的頻率均為.目前在此路口,汽車左轉、右轉、直行的綠燈亮的時間分別為30秒,在綠燈亮總時間不變的條件下,為了緩解交通擁擠,請你用統(tǒng)計的知識對此路口三個方向的綠燈亮的時間做出合理的調整.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】優(yōu)秀傳統(tǒng)文化進校園活動中,學校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術,書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調查,并對此進行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).

請解答下列問題:

(1)請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(2)在參加剪紙活動項目的學生中,男生所占的百分比是多少?

(3)若該校七年級學生共有500人,請估計其中參加書法項目活動的有多少人?

(4)學校教務處要從這些被調查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加器樂活動項目的女生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強家有一塊三角形菜地,量得兩邊長分別為,,第三邊上的高為.請你幫小強計算這塊菜地的面積.(結果保留根號)

查看答案和解析>>

同步練習冊答案