【題目】在矩形ABCD中,ABAD,對角線ACBD相交于點O,動點P由點A出發(fā),沿ABBCCD向點D運動.設(shè)點P的運動路程為x,AOP的面積為y,yx的函數(shù)關(guān)系圖象如圖所示,則AD邊的長為( 。

A.3B.4C.5D.6

【答案】B

【解析】

結(jié)合圖象與矩形根據(jù)三角形的面積公式求得ABBC12,根據(jù)圖象與矩形得到當(dāng)點P運動到點Cy0,由此得到AB+BC7,由此解一元二次方程即可求出答案.

解:當(dāng)P點在AB上運動時,y逐漸增大,當(dāng)P點到達B點時,y最大為3

ABBC3,即ABBC12

當(dāng)P點在BC上運動時,y逐漸減小,當(dāng)P點到達C點時,y0,此時結(jié)合圖象可知P點運動路徑長為7,

AB+BC7

BC7AB,代入ABBC12,

得:AB27AB+120,

解得:AB43

ABAD,

AB3,BC4

AD=BC=4,

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2021年我省開始實施“ 3+1+2”高考新方案,其中語文、數(shù)學(xué)、外語三門為統(tǒng)考科目( 必考), 物理和歷史兩個科目中任選 1門,另外在思想政治、地理、化學(xué)、生物四門科目中任選 2門,共計6門科目,總分750 分, 假設(shè)小麗在選擇科目時不考慮主觀性.

1)小麗選到物理的概率為 ;

2)請用“畫樹狀圖”或“列表”的方法分析小麗在思想政治、 地理、 化學(xué)、生物四門科目中任選 2門選到化學(xué)、生物的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯誤的是( )

A. 拋物線于x軸的一個交點坐標(biāo)為(﹣2,0)

B. 拋物線與y軸的交點坐標(biāo)為(0,6)

C. 拋物線的對稱軸是直線x=0

D. 拋物線在對稱軸左側(cè)部分是上升的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個底面直徑與杯高均為的杯子里面盛了一些溶液,當(dāng)它支在桌子上傾斜到液面與杯壁呈才能將液體倒出,則此時杯子最高處距離桌面________.(,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB = 90°BC = 6,AC = 8.點DAB邊上一點,過點DDE // BC,交邊ACE.過點CCF // AB,交DE的延長線于點F

1)如果,求線段EF的長;

2)求∠CFE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的例題及點撥,并解決問題:

例題:如圖①,在等邊ABC中,MBC邊上一點(不含端點B,C),NABC的外角∠ACH的平分線上一點,且AM=MN.求證:∠AMN=60°

點撥:如圖②,作∠CBE=60°,BENC的延長線相交于點E,得等邊BEC,連接EM.易證:ABMEBMSAS),可得AM=EM,∠1=2;又AM=MN,則EM=MN,可得∠3=4;由∠3+1=4+5=60°,進一步可得∠1=2=5,又因為∠2+6=120°,所以∠5+6=120°,即:∠AMN=60°

問題:如圖③,在正方形A1B1C1D1中,M1B1C1邊上一點(不含端點B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分線上一點,且A1M1=M1N1.求證:∠A1M1N1=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個直角三角形紙片,放置在平面直角坐標(biāo)系中,點,點,點.將沿翻折得到(點為點的對應(yīng)點).

(Ⅰ)求的長及點的坐標(biāo);

(Ⅱ)點是線段上的點,點是線段上的點.

①已知,軸上的動點,當(dāng)取最小值時,求出點的坐標(biāo)及點到直線的距離;

②連接,,且,現(xiàn)將沿翻折得到(點為點的對應(yīng)點),再將繞點順時針旋轉(zhuǎn),旋轉(zhuǎn)過程中,射線,交直線分別為點,,最后將沿翻折得到(點為點的對應(yīng)點),連接,若,求點的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前微信以其顛覆性的創(chuàng)新,贏得了數(shù)億人的支持,為了調(diào)查某中學(xué)學(xué)生在周日上微信的時間,隨機對100名男生和100名女生進行了問卷調(diào)查,得到了如下的統(tǒng)計結(jié)果

1:男生上微信時間的頻數(shù)分布表

上網(wǎng)時間(分鐘)

30≤x40

40≤x50

50≤x60

60≤x70

70≤x80

人數(shù)

5

25

30

25

15

2:女生上微信時間的頻數(shù)分布表

上網(wǎng)時間(分鐘)

30≤x40

40≤x50

50≤x60

60≤x70

70≤x80

人數(shù)

10

20

40

20

10

請結(jié)合圖表完成下列各題

1)完成表3

3

微信時間少于60分鐘

微信時間不少于60分鐘

男生人數(shù)

   

   

女生人數(shù)

   

   

2)若該中學(xué)共有女生750人,請估計其中上微信時間不少于60分鐘的人數(shù);

3)從表3的男生中抽取5人(其中3人上微信時間少于60分鐘,2人上微信時間不少于60分鐘),再從抽取的5人中任取2人,請用列表或畫樹狀圖的方法求出至少有一人上微信時間不少于60分鐘的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線Lyax2+bx+ca0)的對稱軸為x5,且與x軸的左交點為(10),則下列說法正確的有(

C(90);②b+c>﹣10;③y的最大值為﹣16a;④若該拋物線與直線y8有公共交點,則a的取值范圍是a≤

A.①②③④B.①②③C.①③④D.①④

查看答案和解析>>

同步練習(xí)冊答案