【題目】如圖,在Rt△ABC中,∠C=90°,AC=10,BC=15,點(diǎn)D,E,P分別是邊AC,AB;BC上的點(diǎn),且AD=4,AE=4EB.若 是等腰三角形,則CP的長是__________.
【答案】或
【解析】
建立如圖平面直角坐標(biāo)系,,表示出D(0,6)P(x,0)E(12,2),利用長度公式進(jìn)行分類討論即可.
建立如圖平面直角坐標(biāo)系
∵AC=10,AD=4
∴
∴
∵過E作EM⊥BC于M
∴EM∥AC
∴
∴BM=3,EM=2
∴CM=12
∴E(12,2)
設(shè)P(x,0)
∵AD=4,AC=10
∴CD=6
∵D(0,6)P(x,0)E(12,2)
∴ , ,
當(dāng)DE=PD時,
∴
∴
∴
∴CP=
當(dāng)DE=PE時,
∴
∴(負(fù)值舍去)
∴>CB
∵P是邊BC上的點(diǎn)
∴當(dāng)DE=PE時,不符合題意;舍去
當(dāng)DP=PE時,
∴
∴
∴CP=
故答案為: 或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,點(diǎn)E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)若DF=BF,試判定四邊形DEBF是何種特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的直角邊為直徑作交斜邊于點(diǎn),連接并延長交的延長線于點(diǎn),作交于點(diǎn),連接.
(1)求證:
(2)求證:是的切線;
(3)若的半徑為,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日,黨的十九大報告提出“鄉(xiāng)村振興”戰(zhàn)略,之后各地發(fā)展鄉(xiāng)村旅游,某村在2018年3月1日首次舉辦“百花節(jié)”,開園免費(fèi)賞花,于是大批游客涌入該村賞花,吃農(nóng)家飯買土特產(chǎn),平均每人消費(fèi)100元.
(1)據(jù)統(tǒng)計(jì),某個周六早上開園后平均每小時有500人進(jìn)園,兩小時后,平均每小時有100人離園,園區(qū)規(guī)定,當(dāng)園區(qū)內(nèi)游客人數(shù)達(dá)到3000時,將停止進(jìn)園,那么從開園起經(jīng)過多少小時后停止進(jìn)園?
(2)該村對園區(qū)加大建設(shè)和宣傳力度,2019年3月1日,第二屆“百花節(jié)”如期開園,同時規(guī)定進(jìn)園門票費(fèi)為每人60元,受各種因素影響,與2018年同期相比,人數(shù)在20000的基礎(chǔ)上降低了a%,除門票外平均每人消費(fèi)金額增長了a%,園區(qū)總收入增長了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解禁毒知識宣傳的效果,針對全校學(xué)生進(jìn)行了一次測試,并隨機(jī)抽取 了部分學(xué)生的測試成績(滿分100分,最低分為60分,80分及以上為優(yōu)秀),統(tǒng)計(jì)后繪制成如下不完整的
請根據(jù)以上信息,解答下列問題:
(1)表中__________,_________;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)若該校有學(xué)生2100人,試估計(jì)分?jǐn)?shù)達(dá)到優(yōu)秀的有多少人;
(4)學(xué)校準(zhǔn)備從得分最高的5名學(xué)生(3男2女)中,隨機(jī)挑選2名學(xué)生去參加市里舉辦的禁毒知識競賽.小明說:“因?yàn)槟猩藬?shù)是女生人數(shù)的倍,所以選中的2名學(xué)生都是男生的概率是選中的2名學(xué)生都是女生的概率的倍.”他的說法正確嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點(diǎn)E是對角線BD上一點(diǎn),點(diǎn)Q是AD邊上一點(diǎn),BQ交AE于點(diǎn)P,∠ABQ=∠DAE,點(diǎn)F是AB邊的中點(diǎn).
(1)當(dāng)四邊形ABCD是正方形時,如圖(1).
①若BE=BA,求證:△ABP≌△EBP;
②若BE=4DE,求證:AF2=AQ·AD.
(2)當(dāng)四邊形ABCD是矩形時,如圖(2),連接FQ,FD.若BE=4DE,求證:∠AFQ=∠ADF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中直徑,半徑,點(diǎn)是半圓的三等分點(diǎn),點(diǎn)是半徑上的動點(diǎn),使的值最小時,( )
A.1B.C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊矩形ABCD,使點(diǎn)D落在BC邊上的點(diǎn)F處.
(1)求證:△ABF∽△FCE;
(2)若DC=8,CF=4,求矩形ABCD的面積S.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com