【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式了的平方,如3+2=(1+)2.善于思考的小明進(jìn)行了以下探索:
若設(shè)a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均為整數(shù)),
則有a=m2+2n2,b=2mn.
這樣小明就找到了一種把類似a+b的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)若a+b=(m+n)2,當(dāng)a、b、m、n均為整數(shù)時(shí),用含m、n的式子分別表示a、b,得:a= ,b= ;
(2)若a+6=(m+n)2,且a、m、n均為正整數(shù),求a的值;
(3)化簡(jiǎn):.
【答案】(1)a=m2+7n2,b=2mn;(2)a的值為為12或28;(3)+1.
【解析】
(1)利用完全平方公式展開可得到用m、n表示出a、b;
(2)利用(1)中結(jié)論得到6=2mn,利用a、m、n均為正整數(shù)得到m=1,n=3或m=3,n=1,然后利用a=m2+3n2計(jì)算對(duì)應(yīng)a的值;
(3)設(shè)
=t,兩邊平方得到t2=4﹣+4++2,然后利用(1)中的結(jié)論化簡(jiǎn)得到t2=6+2,最后把6+2寫成完全平方形式可得到t的值.
解:(1)設(shè)a+b=(m+n)2=m2+7n2+2mn(其中a、b、m、n均為整數(shù)),
則有a=m2+7n2,b=2mn;
故答案為m2+7n2,2mn;
(2)∵6=2mn,
∴mn=3,
∵a、m、n均為正整數(shù),
∴m=1,n=3或m=3,n=1,
當(dāng)m=1,n=3時(shí),a=m2+3n2=1+3×9=28;
當(dāng)m=3,n=1時(shí),a=m2+3n2=9+3×1=12;
即a的值為為12或28;
(3)設(shè)
=t,
則t2=4﹣+4++2
=8+2
=8+2
=8+2(﹣1)
=6+2
=(+1)2,
∴t=+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)P是數(shù)軸上表示-2與-1兩數(shù)的點(diǎn)為端點(diǎn)的線段的中點(diǎn).
(1)數(shù)軸上點(diǎn)P表示的數(shù)為 ;
(2)在數(shù)軸上距離點(diǎn)P為2.5個(gè)單位長度的點(diǎn)表示的數(shù)為 ;
(3)如圖,若點(diǎn)P是線段AB(點(diǎn)A在點(diǎn)B的左側(cè))的中點(diǎn),且點(diǎn)A表示的數(shù)為m,那么點(diǎn)B表示的數(shù)是 .(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了更好的開展“學(xué)校特色體育教育”,從全校八年級(jí)的各班分別隨機(jī)抽取了5名男生和5名女生,組成了一個(gè)容量為60的樣本,進(jìn)行各項(xiàng)體育項(xiàng)目的測(cè)試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個(gè)個(gè)體的測(cè)試成績(jī)的部分統(tǒng)計(jì)表、圖:某校60名學(xué)生體育測(cè)試成績(jī)頻數(shù)分布表
成績(jī) | 劃記 | 頻數(shù) | 百分比 |
優(yōu)秀 | 正正正 | a | 30% |
良好 | 正正正正正正 | 30 | b |
合格 | 正 | 9 | 15% |
不合格 | 3 | 5% | |
合計(jì) | 60 | 60 | 100% |
(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請(qǐng)根據(jù)以上信息,解答下列問題:
(1)表中的a=_____,b=_____;
(2)請(qǐng)根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖;
(3)如果該校八年級(jí)共有150名學(xué)生,根據(jù)以上數(shù)據(jù),估計(jì)該校八年級(jí)學(xué)生身體素質(zhì)良好及以上的人數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上, 直線MN: y=x-8沿x軸的負(fù)方向以每秒2個(gè)單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時(shí)間為t, m與t的函數(shù)圖象如圖2所示.
(1)若AB=6
①點(diǎn)A的坐標(biāo)為_____________,矩形ABCD的面積為____________.
②求a, b的值;
(2)若AB=4,在平移過程中,求直線MN掃過矩形ABCD的面積 S與 t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校與圖書館在冋一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)日的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,乙的速度為 米/分鐘;
(2)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+2與x軸、y軸分別相交于點(diǎn)A、點(diǎn)B,∠BAO=30°,若將△AOB沿直錢CD折疊,使點(diǎn)A與點(diǎn)B重合,折痕CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)求k的值;
(2)求點(diǎn)C的坐標(biāo);
(3)求直線CD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了發(fā)展校園足球運(yùn)動(dòng),某城區(qū)五校決定聯(lián)合購買一批足球服和足球.經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn):甲、乙兩商場(chǎng)以同樣的價(jià)格出售同種品牌的足球服和足球,已知每套足球服比每個(gè)足球多60元,兩套足球服與三個(gè)足球的費(fèi)用相等.經(jīng)洽談,甲商場(chǎng)的優(yōu)惠方案是:每購買20套足球服,送一個(gè)足球;乙商場(chǎng)的優(yōu)惠方案是:若購買足球服超過80套,則購買的足球打八折,若購買足球服不超過80套,不打折.
(1)求每套足球服和每個(gè)足球的價(jià)格各是多少元;
(2)若城區(qū)五校聯(lián)合購買120套足球服和()個(gè)足球,假如你是本次購買任務(wù)的負(fù)責(zé)人,你會(huì)選擇到甲、乙兩家中的哪一家商場(chǎng)購買更便宜?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點(diǎn)E是邊CD上的動(dòng)點(diǎn)(點(diǎn)E不與端點(diǎn)C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點(diǎn)F,H,G.當(dāng)=時(shí),DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O在直線AB上,OD是∠AOC的平分線,OE是∠BOC的平分線.
(1)圖中與∠AOD互余的角是 ,與∠COE互補(bǔ)的角是 ;(把符合條件的角都寫出來)
(2)求∠DOE的度數(shù);
(3)如果∠BOF=51°34',∠COE=38°43',請(qǐng)畫出射線OF,求∠COF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com