【題目】空氣質(zhì)量狀況已引起全社會(huì)的廣泛關(guān)注,某市統(tǒng)計(jì)了去年每月空氣質(zhì)量達(dá)到良好以上的天數(shù),整理后制成如圖所示的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)以上信息解答下列問題:該市去年空氣質(zhì)量連續(xù)提升的月份范圍是____;扇形統(tǒng)計(jì)圖中扇形A的圓心角的度數(shù)為____

    

【答案】612 60°

【解析】

(1)從折線統(tǒng)計(jì)圖上可以看出該市去年空氣質(zhì)量持續(xù)上升的月份段即為答案.

(2)根據(jù)圓周角360°乘以A類所占的比例,可得答案, 在扇形統(tǒng)計(jì)圖中,每部分占總部分的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比.

1)從折線統(tǒng)計(jì)圖上可以看出該市去年空氣質(zhì)量連續(xù)提升的月份從612.

2)扇形統(tǒng)計(jì)圖中扇形A的圓心角的度數(shù)360°×=60°;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道多項(xiàng)式的乘法可以利用圖形的面積進(jìn)行解釋,例如,(2a+b)(a+b)=2a2+3ab+b2就能用圖1或圖2等圖形的面積表示:

(1)請你寫出圖3所表示的一個(gè)等式:          .

(2)試畫出一個(gè)圖形,使它的面積能表示成(a+b)(a+3b)=a2+4ab+3b2.

1      2      3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用邊長相等的下列兩種正多邊形,不能進(jìn)行平面鑲嵌的是( 。

A. 等邊三角形和正六邊形 B. 正方形和正八邊形

C. 正五邊形和正十邊形 D. 正六邊形和正十二邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在□ABCD中,O是AC、BD的交點(diǎn),過點(diǎn)O 與AC垂直的直線交邊AD于點(diǎn)E,若□ABCD的周長為22cm,則△CDE的周長為( ).

A. 8cm B. 10cm C. 11cm D. 12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“今天你光盤了嗎?”這是國家倡導(dǎo)“厲行節(jié)約,反對浪費(fèi)”以來的時(shí)尚流行語.某校團(tuán)委隨機(jī)抽取了部分學(xué)生,對他們進(jìn)行了關(guān)于“光盤行動(dòng)”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:

根據(jù)上述信息,解答下列問題:

(1)抽取的學(xué)生人數(shù)為   ;

(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

(3)請你估計(jì)該校1200名學(xué)生中對“光盤行動(dòng)”持贊成態(tài)度的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線

1)如圖1,直接寫出的數(shù)量關(guān)系為 ;

2)如圖2,的角平分線所在的直線相交于點(diǎn),試探究之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形ABCD各邊的中點(diǎn)所得四邊形是矩形,則四邊形ABCD一定是( )
A.矩形
B.菱形
C.對角線互相垂直的四邊形
D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正方形ABCD的邊長為4,E為BC邊上一點(diǎn),BE=3,M為線段AE上一點(diǎn),射線BM交正方形的一邊于點(diǎn)F,且BF=AE,則BM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先仔細(xì)閱讀材料,再解決問題:

完全平方式x2±2xy+y2=(x±y2以及(x±y2的值為非負(fù)數(shù)的特點(diǎn)在數(shù)學(xué)學(xué)習(xí)中有廣泛的應(yīng)用,比如探求2x2+12x4的最大(。┲禃r(shí),我們可以配成完全平方式來解決:

解:原式=2x2+6x2)=2x2+6x+992)=2[x+3211]2x+3222

∵無論x取什么數(shù),都有(x+32≥0,∴(x+32的最小值為0

x=﹣3時(shí),2x+3222的最小值是2×022=﹣22;

∴當(dāng)x=﹣3時(shí),2x2+12x4的最小值是﹣22

請根據(jù)上面的解題思路,解答下列問題:

1)多項(xiàng)式3x26x+12的最小值是多少,并寫出對應(yīng)的x的值;

2)判斷多項(xiàng)式有最大值還是最小值,請你說明理由并求出當(dāng)x為何值時(shí),此多項(xiàng)式的最大值(或最小值)是多少.

查看答案和解析>>

同步練習(xí)冊答案