【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM= AD,點N是折線AB﹣BC上的一個動點.

(1)如圖1,當N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為
(2)當點N在AB邊上時,將△AMN沿MN翻折得到△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為;
②當點A′落在對角線AC上時,如圖3,求證:四邊形AM A′N是菱形;
③當點A′落在對角線BD上時,如圖4,求 的值.

【答案】
(1)
(2)1,解:②在菱形ABCD中,AC平分∠DAB,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵△AMN沿MN翻折得到△A′MN,∴AC⊥MN,AM=A′M,AN=A′N,;∴∠AMN=∠ANM=60°,∴AM=AN,∴AM=A′M=AN=A′N,∴四邊形AM A′N是菱形;,③在菱形ABCD中,AB=AD,∴∠ADB=∠ABD=60°,∴∠BA′M=∠DMA′+∠ADB,∴A′M=AM=2,∠NA′M=∠A=60°,∴∠NA′B=∠DMA′,∴△DMA′∽△BA′N,∴ = ,∵MD= AD=1,A′M=2,∴ =
【解析】解:(1)如圖1,

過點N作NG⊥AB于G,

∵四邊形ABCD是菱形,

∴AD∥BC,OD=OB,

= =1,

∴BN=DM= AD=1,

∵∠DAB=60°,

∴∠NBG=60°

∴BG= ,GN= ,

∴AN= = = ;

故答案為: ;

( 2 )①當點A′落在AB邊上,則MN為AA′的中垂線,

∵∠DAB=60°AM=2,

∴AN= AM=1,

故答案為:1;

(1)過點N作NG⊥AB于G,構造直角三角形,根據(jù)菱形的性質得出AD∥BC,OD=OB,∠NBG=60° ,根據(jù)平行線分線段成比例定理得出DM∶BN=OD∶OB=1,從而得出BN=DM=1 ,利用含30°的直角三角形的邊的關系得出BG、GN的長,利用勾股定理解決問題;
(2)①利用線段中垂線的性質得到MN⊥AA',利用含30°的直角三角形的邊的關系得出AN的長;
②利用菱形的性質得到對角線平分每一組對角,得到∠DAC=∠CAB=30°,根據(jù)翻折的性質得到AC⊥MN,AM=A′M,AN=A′N,∠AMN=∠ANM=60°,AM=AN,AM=A′M=AN=A′N,四邊形AM A′N是菱形
③根據(jù)菱形的性質得到AB=AD,∠ADB=∠ABD=60°,求得∠NA′M=∠DMA′+∠ADB,證得A′M=AM=2,∠NA′M=∠A=60°,得到∠NA′B=∠DMA′,從而判斷出△DMA′∽△BA′N,利用相似三角形對應邊成比例得到結果.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉一定角度后得到△ABE,

AF=4,AB=7.

(1)旋轉中心為______;旋轉角度為______;

(2)DE的長度為______;

(3)指出BEDF的位置關系如何?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車廠改進生產工藝后,每天生產的汽車比原來每天生產的汽車多6輛,那么現(xiàn)在15天的產量就超過了原來20天的產量,若設原來每天能生產x輛,則可列不等式為(  )

A. 15(x+6)>20xB. 15x>20(x+6)C. 15x>20(x-6)D. 15(x+6)≥20x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:a3a_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用不等式的基本性質求下列不等式的解集,并說出變形的依據(jù).

(1)x+2 012>2 013,x__________;(______________________________)

(2)2x>-,x__________;(______________________________)

(3)-2x>-,x__________;(______________________________)

(4)->-1,x__________.(______________________________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列不等式:a的相反數(shù)的絕對值與3的和是正數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將命題“等腰三角形兩底角相等”改寫成“如果……那么……”的形式______,它是______(填“真”或“假”)命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB=12cm,CAB延長線上一點,CPO相切于點P,過點B作弦BDCP,連接PD

1)求證:點P的中點;

2)若C=∠D,求四邊形BCPD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在西部大開發(fā)中,為了改善生態(tài)環(huán)境,鄂西政府決定綠化荒地,計劃第1年先植樹1.5萬畝,以后每年比上一年增加1萬畝,結果植樹總數(shù)是時間(年)的一次函數(shù),則這個一次函數(shù)的圖象是(  )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案