精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點在以為直徑的上,的平分線交于點,過點的平行線交的延長線于點.

1)求證:的切線;

2)若,,求的長度.

【答案】1)見解析;(2

【解析】

1)連接OD,由的直徑得到∠ACB=90,根據CD平分∠ACB及圓周角定理得到∠AOD=90,再根據DEAB推出ODDE ,即可得到的切線;

2)過點CCHABH,CDABM,利用勾股定理求出AB,再利用面積法求出CH,求出OH,根據△CHM∽△DOM求出HM得到AM,再利用平行線證明△CAM∽△CED,即可求出DE.

1)如圖,連接OD,

的直徑,

∴∠ACB=90

CD平分∠ACB

∴∠ACD=45

∴∠AOD=90,

ODAB,

DEAB,

ODDE ,

的切線;

2)過點CCHABHCDABM,

∵∠ACB=90,,,

AB=,

SABC=,

CH=,

AH=,

OH=OA-AH=5-3.6=1.4,

∵∠CHM=DOM=90,∠HMC=DMO,

∴△CHM∽△DOM,

=,

HM=,

AM=AH+HM=,

ABDE,

∴△CAM∽△CED,

,

DE=.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的OAC于點D,點EBC的中點,連接DE

(1)求證:DEO的切線;

(2)求證:4DE2CDAC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】八(1)班為了配合學校體育文化月活動的開展,同學們從捐助的班費中拿出一部分錢來購買羽毛球拍和跳繩。已知購買一副羽毛球拍比購買一根跳繩多20元。若用200元購買羽毛球拍和用80元購買跳繩,則購買羽毛球拍的副數是購買跳繩根數的一半。

1)求購買一副羽毛球拍、一根跳繩各需多少元?

2)雙11期間,商店老板給予優(yōu)惠,購買一副羽毛球拍贈送一根跳繩,如果八(1)班需要的跳繩根數比羽毛球拍的副數的倍還多,且該班購買羽毛球拍和跳繩的總費用不超過元,那么八(1)班最多可購買多少副羽毛球拍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個盒子里有標號分別為1,2,3,4的四個球,這些球除標號數字外都相同.

(1)從盒中隨機摸出一個小球,求摸到標號數字為奇數的球的概率;

(2)甲、乙兩人用這四個小球玩摸球游戲,規(guī)則是:甲從盒中隨機摸出一個小球,記下標號數字后放回盒里,充分搖勻后,乙再從盒中隨機摸出一個小球,并記下標號數字.若兩次摸到球的標號數字同為奇數或同為偶數,則判甲贏;若兩次摸到球的標號數字為一奇一偶,則判乙贏.請用列表法或畫樹狀圖的方法說明這個游戲對甲、乙兩人是否公平.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°AC=8cm,BC=6cm. P從點A出發(fā),沿AB邊以2 cm/s的速度向點B勻速移動;點Q從點B出發(fā),沿BC邊以1 cm/s的速度向點C勻速移動, 當一個運動點到達終點時,另一個運動點也隨之停止運動,設運動的時間為t(s).

1)當PQAC時,求t的值;

2)當t為何值時,△PBQ的面積等于cm 2.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,AEBCCB延長線于E,CFAEAD延長線于點F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE=4AD=5,求OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據以往經驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數關系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在下列命題中:(1)拋物線y2x326頂點坐標是(3,﹣6);(2)一元二次方程x22x+0的兩根之和等于2;(3)已知拋物線yax2+bx+ca0)的對稱軸為x=﹣2,與x軸的一個交點為(2,0).若關于x的一元二次方程ax2+bx+cpp0)有整數根,則p的值有4個;(4)二次函數y=﹣x22x+c在﹣3≤x≤2的范圍內有最小值﹣5,則c的值是﹣2.其中正確結論的個數是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖,矩形ABCD中,AD6,DC7,菱形EFGH的三個頂點E,G,H分別在矩形ABCD的邊AB,CD,DA上,AH2,連接CF

1)若DG2,求證四邊形EFGH為正方形;

2)若DG6,求FCG的面積;

3)當DG為何值時,FCG的面積最。

查看答案和解析>>

同步練習冊答案