如圖①,四邊形ABCD是正方形, 點(diǎn)G是BC上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF⊥AG于點(diǎn)F.
(1) 求證:DE-BF = EF.
(2) 當(dāng)點(diǎn)G為BC邊中點(diǎn)時(shí), 試探究線段EF與GF之間的數(shù)量關(guān)系,
并說(shuō)明理由.
(3) 若點(diǎn)G為CB延長(zhǎng)線上一點(diǎn),其余條件不變.
請(qǐng)你在圖②中畫出圖形,寫出此時(shí)DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).
(1) 證明:
∵ 四邊形ABCD 是正方形, BF⊥AG , DE⊥AG
∴ DA=AB, ∠BAF + ∠DAE = ∠DAE + ∠ADE = 90°∴ ∠BAF = ∠ADE ………2 分
∴ △ABF ≌ △DAE ………………………3 分 ∴ BF = AE , AF = DE
∴ DE-BF = AF-AE = EF ……………………4 分
(2)EF = 2FG 理由如下:∵ AB⊥BC , BF⊥AG , AB =2 BG
∴ △AFB ∽△BFG ∽△ABG ………………5 分
∴ ………6分∴ AF = 2BF , BF = 2 FG 7分
由(1)知, AE = BF,∴ EF = BF = 2 FG ……8分
(3) 如圖 ……………………9分DE + BF = EF 10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,在中,,,,另有一等腰梯形()的底邊與重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點(diǎn).
(1)直接寫出△AGF與△ABC的面積的比值;
(2)操作:固定,將等腰梯形以每秒1個(gè)單位的速度沿方向向右運(yùn)動(dòng),直到點(diǎn)與點(diǎn)重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為秒,運(yùn)動(dòng)后的等腰梯形為(如圖2).
①探究1:在運(yùn)動(dòng)過(guò)程中,四邊形能否是菱形?若能,請(qǐng)求出此時(shí)的值;若不能,請(qǐng)說(shuō)明理由.
②探究2:設(shè)在運(yùn)動(dòng)過(guò)程中與等腰梯形重疊部分的面積為,求與的函數(shù)關(guān)系式.
(第24題)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,點(diǎn)C、D是以線段AB為公共弦的兩條圓弧的中點(diǎn),AB=4,點(diǎn)E、F分別是線段CD,AB上的動(dòng)點(diǎn),設(shè)AF=x,AE2-FE2=y,則能表示y與x的函數(shù)關(guān)系的圖象是( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若等腰三角形中有一個(gè)角等于,則這個(gè)等腰三角形的頂角的度數(shù)為( )
A. B. C.或 D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1,作正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1…按這樣的規(guī)律進(jìn)行下去,第2011個(gè)正方形的面積為 ( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com