2011年11月28日至12月9日,聯(lián)合國氣候變化框架公約第17次締約方會議在南非德班召開,大會通過了“德班一攬子決議”(DurbanPackageOutcome),建立德班增強行動平臺特設(shè)工作組,決定實施《京都議定書》第二承諾期并啟動綠色氣候基金,中國的積極態(tài)度贏得與會各國的尊重.
在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟,全面實現(xiàn)低碳生活逐漸成為人們的共識.某企業(yè)采用技術(shù)革新,節(jié)能減排.從去年1至6月,該企業(yè)二氧化碳排放量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間的函數(shù)關(guān)系如下表:
月份x(月) | 1 | 2 | 3 | 4 | 5 | 6 |
二氧化碳排放量y1(噸) | 600 | 300 | 200 | 150 | 120 | 100 |
(1) y2=﹣x2+15x
(2)去年12月政府獎勵該企業(yè)的資金最多,最多資金是16920元
(3)m的整數(shù)值為50
解析試題分析:(1)經(jīng)過題意分析和觀察圖表可以得出y1與x的積是一個定值,可以得出y1與x之間的函數(shù)關(guān)系是反比例函數(shù),由7、8月份的排放量代入解析式y(tǒng)2=ax2+bx,由待定系數(shù)法就可以就可以求出y2與x之間的函數(shù)關(guān)系式.
(2)由(1)的結(jié)論根據(jù)條件可以表示出政府獎勵資金與月份的函數(shù)關(guān)系式,然后分別求出1至6月最大值和7至12月的最大值就可以表示出這一年的最多獎勵資金.
(3)由條件求出去年12月的排放量就可以求出12月的獎勵資金,進而可以表示出今年1至3月的獎勵資金和4至6月獎勵資金與總獎勵資金建立等量關(guān)系就可以求出其m的值.
解:(1)由題意設(shè)y1與x的函數(shù)關(guān)系式為:y1=,
∴600=,
∴k=600
∴,
∵7月和去年8月該企業(yè)的二氧化碳排放量都為56噸且滿足二次函數(shù)y2=ax2+bx(a≠0),
∴,解得,
∴y2=﹣x2+15x;
(2)設(shè)去年第x月政府獎勵該企業(yè)的資金為w
當(dāng)1≤x≤6,且x取整數(shù)時=600x2﹣1200x+600
∴,∵600>0,1≤x≤6,∴w隨x的增大而增大,∴當(dāng)x=6時,w最大=15000元
當(dāng)7≤x≤12,且x取整數(shù)時w=(600﹣y2)×30=(600+x2﹣15x)×30=30x2﹣450x+18000
∴
∵30>0,7≤x≤12且x取整數(shù),∴當(dāng)x=12時,
w最大=16920元,∵16920>15000,∴當(dāng)x=12時,w最大=16920元
∴去年12月政府獎勵該企業(yè)的資金最多,最多資金是16920元;
(3)當(dāng)x=12時,
y2=﹣122+12×15=36,
∴30(1+m%)×3×[600﹣(36﹣24)]+30(1+m%)×3×[600﹣36(1﹣m%)]=162000,
令m%=n,整理,得n2+33n﹣18=0,∴
∵332=1089,342=1156,而1161更接近1156,
∴
∴,(舍)
∴m≈50
∴m的整數(shù)值為50.
點評:本題試一道二次函數(shù)的試題考查了根據(jù)實際問題列反比例函數(shù)關(guān)系式和二次函數(shù)關(guān)系式,二次函數(shù)最值的運用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD.
(1)求該拋物線的解析式;
(2)設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過點P的直線PE與y軸交于點E,是否存在以O(shè)、P、E為頂點的三角形與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=﹣x2+4與x軸交于A、B兩點,與y軸交于C點,點P是拋物線上的一個動點且在第一象限,過點P作x軸的垂線,垂足為D,交直線BC于點E.
(1)求點A、B、C的坐標(biāo)和直線BC的解析式;
(2)求△ODE面積的最大值及相應(yīng)的點E的坐標(biāo);
(3)是否存在以點P、O、D為頂點的三角形與△OAC相似?若存在,請求出點P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過△ABC的三個頂點,點A坐標(biāo)為(0,3),點B坐標(biāo)為(2,3),點C在x軸的正半軸上.
(1)求該拋物線的函數(shù)關(guān)系表達(dá)式及點C的坐標(biāo);
(2)點E為線段OC上一動點,以O(shè)E為邊在第一象限內(nèi)作正方形OEFG,當(dāng)正方形的頂點F恰好落在線段AC上時,求線段OE的長;
(3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點E和點C重合時停止運動.設(shè)平移的距離為t,正方形DEFG的邊EF與AC交于點M,DG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請說明理由;
(4)在上述平移過程中,當(dāng)正方形DEFG與△ABC的重疊部分為五邊形時,請直接寫出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當(dāng)t為何值時,S有最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知A(3,0)、B(4,4)、原點O(0,0)在拋物線y=ax2+bx+c (a≠0)上.
(1)求拋物線的解析式.
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個交點D,求m的值及點D的坐標(biāo).
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P的坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于x軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,四邊形ABCO是梯形,其中A(6,0),B(3,),C(1,),動點P從點O以每秒2個單位的速度向點A運動,動點Q也同時從點B沿B→ C→O的線路以每秒1個單位的速度向點O運動,當(dāng)點P到達(dá)A點時,點Q也隨之停止,設(shè)點P、Q運動的時間為t(秒).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)當(dāng)點Q在CO邊上運動時,求△OPQ的面積S與時間t的函數(shù)關(guān)系式;
(3)以O(shè)、P、Q為頂點的三角形能構(gòu)成直角三角形嗎?若能,請求出t的值,若不能,請說明理由;
(4)經(jīng)過A、B、C三點的拋物線的對稱軸、直線OB和PQ能夠交于一點嗎?若能,請求出此時t的值(或范圍),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
某村的糧食總產(chǎn)量為a(a為常數(shù))噸,設(shè)該村的人均糧食產(chǎn)量為y噸,人口數(shù)為x,則y與x之間的函數(shù)關(guān)系式的大致圖象應(yīng)為( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com