如圖,AD∥BC,∠BAD=90°,以點B為圓心,BC長為半徑畫弧,與射線AD相交于點E,連接BE,過C點作CF⊥BE,垂足為F.線段BF與圖中現(xiàn)有的哪一條線段相等?先將你猜想出的結(jié)論填寫在下面的橫線上,然后再加以證明.
結(jié)論:BF=______.

【答案】分析:由題意可得BE=BC,∠AEB=∠FBC,易證明得直角三角形ABE與直角三角形FCB全等,即可得BE=AE.
解答:解:結(jié)論:BF=AE.
證明:∵CF⊥BE,
∴∠BFC=90°,
又∵AD∥BC,
∴∠AEB=∠FBC;
由于以點B為圓心,BC長為半徑畫弧,
∴BE=BC,
在△ABE與△FCB中,
∴△ABE≌△FCB(AAS),
∴BF=AE.
點評:本題考查了直角三角形全等的判定與性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,AD∥BC,則下列式子成立的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖:AD∥BC,AB=AC,∠BAC=80°,則∠DAC=
50
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,AD⊥BC,DE∥AB,則∠CDE與∠BAD的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,AD=BC,要得到△ABD≌△CDB,可以添加角的條件:∠
ADB
ADB
=∠
CBD
CBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AD⊥BC,EF⊥BC,∠1=∠2.求證:AB∥GF.

查看答案和解析>>

同步練習(xí)冊答案