已知,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)的圖象與一次函數(shù)y=x+b的圖象交于A(-1,b-1)、B(-5,b-5)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)設(shè)拋物線y=-x2+b′x+c(c>0)的頂點(diǎn)P在直線AB上,且PA:PB=1:3,求拋物線的解析式;
(3)把以上函數(shù)圖象同步向右平移,使直線AB與兩坐標(biāo)軸所圍成的三角形的面積等于2,求平移后的拋物線的解析式.
【答案】分析:(1)利用待定系數(shù)法求出一次函數(shù)解析式和反比例函數(shù)解析式即可;
(2)根據(jù)P點(diǎn)在線段AB上時,作PE∥BC,交AC于E,作PD∥AC交BC于D或當(dāng)P點(diǎn)在線段BA的延長線上時,利用平行線的性質(zhì)分別求出即可;
(3)首先求出直線解析式,進(jìn)而得出拋物線解析式即可.
解答:解:(1)把A(-1,b-1)、B(-5,b-5)兩點(diǎn)代入y=,得:
,
解得:,
∴正比例函數(shù)解析式為:y=x+6,
反比例函數(shù)反比例函數(shù)解析式為:y=-;

(2)∵直線AB為y=x+6,且A(-1,5),B(-5,1),
過點(diǎn)A,B分別作y軸、x軸的平行線,它們相交于點(diǎn)C(-1,1),
則AC=BC=4,
①P點(diǎn)在線段AB上時,作PE∥BC,交AC于E,作PD∥AC交BC于D,

=,=,
=,
==
∴PE=1,PD=3,
∴P(-2,4),
∴拋物線的解析式為:y=-(x-1) 2+4,
即y=-x 2-4x,
此時,c=0,不符合題意,舍去;
②當(dāng)P點(diǎn)在線段BA的延長線上時,同理可得:P(1,7)
∴拋物線的解析式為:y=-(x-1) 2+7,
即y=-x 2+2x+6,
此時,c=6>0,符合題意,
∴由①、②可知,拋物線的解析式為:y=-x 2+2x+6;

(3)設(shè)平移后的直線解析式為:y=x+t,
它交x軸于點(diǎn)(-t,0),交y軸于點(diǎn)(0,t),
∴S=×|-t|×|t|=2,
∴t=±2,
∴平移后的直線解析式為:y=x+2或y=x-2,
即圖象向右平移了4個單位或8個單位,
此時的拋物線解析式為:y=-(x-1-4)2+7或y=-(x-1-8)2+7,
即y=-x 2+10x-18或y=-x 2+18x-74.
點(diǎn)評:此題主要考查了反比例函數(shù)的綜合應(yīng)用以及二次函數(shù)解析式的求法和平行線分線段成比例定理等知識,正確得出直線AB解析式是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)xOy中,反比例函數(shù)y=
k
x
的圖象與y=
3
x
的圖象關(guān)于x軸對稱,又與直線y=ax+2交于點(diǎn)A(m,3).已知點(diǎn)M(-3,y1)、N(l,y2)和Q(3,y3)三點(diǎn)都在反比例函數(shù)y=
k
x
的圖象上. 
(l)比較y1、y2、y3的大;
(2)試確定a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系里,如圖,已知直線:y=-x+3
2
交y軸于點(diǎn)A,交x軸于點(diǎn)B,三角板OCD如圖1置,其中∠D=30°,∠OCD=90°,OD=7,把三角板OCD繞點(diǎn).順時針旋轉(zhuǎn)15°,得到△OC1D1(如圖2),這時OC1交AB于點(diǎn)E,C1D1交AB于點(diǎn)F.
(1)求∠EFC1的度數(shù);
(2)求線段AD1的長;
(3)若把△OC1D1,繞點(diǎn)0順時針再旋轉(zhuǎn)30.得到△OC2D2,這時點(diǎn)B在△OC2D2的內(nèi)部、外部、還是邊上?證明你的判斷.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,已知點(diǎn)P(3-m,2m-4)在第一象限,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,已知直線y=kx+b與直線y=
1
2
x
平行,分別交x軸,y軸于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)是-4,以AB為邊在第二象限內(nèi)作矩形ABCD,使AD=
5

(1)求矩形ABCD的面積;
(2)過點(diǎn)D作DH⊥x軸,垂足為H,試求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為
y=-
6
x
y=-
6
x

查看答案和解析>>

同步練習(xí)冊答案