如圖,在平地上一點(diǎn)C處,測(cè)得山頂A的仰角為30°,沿直線前進(jìn)30m,到達(dá)D處,測(cè)得山頂A的仰角為45°,則山高為( 。
A.15(
3
+1)m
B.15
3
m
C.32
3
m
D.30(
3
+1)m

易得BD=
AB
tan45°
=AB,BC=
AB
tan30°
=
3
AB.
∴CD=BC-BD=(
3
-1)AB=30,
∴山高AB=15(
3
+1)m.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,放置在水平桌面上的臺(tái)燈的燈臂AB長(zhǎng)為30cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°,使用發(fā)現(xiàn),光線最佳時(shí)燈罩BC與水平線所成的∠CBF=30°,此時(shí)燈罩頂端C與底座AD構(gòu)成的∠CAD=45°.求燈罩C到桌面的高度CE是多少cm(結(jié)果精確到0.1cm,參考數(shù)據(jù)
3
≈1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,河流兩岸a,b互相平行,C,D是河岸a上間隔50m的兩個(gè)電線桿.某人在河岸b上的A處測(cè)得∠DAB=32°,然后沿河岸走了100m到達(dá)B處,測(cè)得∠CBF=64°,求河流的寬度CF的值?(結(jié)果精確到0.1m).參考數(shù)據(jù):
角度αsinαcosαtanα
32°0.530.850.62
64°0.90.442.05

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某人沿著傾斜角α為的斜坡前進(jìn)了100米,則他上升的最大高度是(  )
A.
100
sinα
B.100sinα米C.
100
cosα
D.100cosα米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,某水庫(kù)堤壩橫截面迎水坡AB的坡度是1:
3
,堤壩高為40m,則迎水坡面AB的長(zhǎng)度是(  )
A.80mB.80
3
m
C.40mD.40
3
m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,某村要設(shè)計(jì)修建一條引水渠,渠道的橫斷面為等腰梯形,渠道底面寬0.8m,渠道內(nèi)坡度是1:0.5.引水時(shí),水面要低于渠道上沿0.2m,水流的橫斷面(梯形ABFE)的面積為1.3m2,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明(M)和小麗(N)兩人一前一后放風(fēng)箏,結(jié)果風(fēng)箏在空中E處糾纏在一起(如示意圖).若∠ENF=45°,小麗、小明之間的距離與小麗已用的放風(fēng)箏線的長(zhǎng)度相等,則∠M的正切值是( 。
A.2+
3
B.2-
3
C.
2
+1
D.
2
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

現(xiàn)要建造一段水壩,它的橫截面是梯形ABCD,其上底CD=4米,斜坡BC的坡度i=1:2,tanA=
1
3
,壩高DE=6米.
(1)求截面梯形的面積;
(2)若該水壩的長(zhǎng)為1000米,工程由甲、乙兩個(gè)工程隊(duì)同時(shí)合作完成,原計(jì)劃需要25天,但在開工時(shí),甲工程隊(duì)增加了機(jī)器,工作效率提高60%,結(jié)果工程提前了5天完成,問這兩個(gè)工程隊(duì)原計(jì)劃每天各完成多少土方(壩的土方=壩的橫截面的面積×壩的長(zhǎng)度)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,斜坡MN坡度為i=1:2.4,在坡腳N處有一棵大樹PN,太陽(yáng)光線以30°的俯角將樹頂P的影子落在斜坡MN上的點(diǎn)Q處.如果大樹PN在斜坡MN上的影子NQ=13米,求大樹PN的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案