【題目】如圖,AD是∠BAC平分線,點(diǎn)EAB上,且AE=AC,EFBCAC于點(diǎn)F,ADCE交于點(diǎn)G,與EF交于點(diǎn)H.

(1)證明:AD垂直平分CE;

(2)若∠BCE=40°,求∠EHD的度數(shù).

【答案】(1)見解析;(2)50°.

【解析】

(1)根據(jù)等腰三角形三線合一的性質(zhì)可得出結(jié)論;(2)(1)可知點(diǎn)DCE垂直平分線上的點(diǎn),則CD=DE,DCE=DEC.EFBC,可得EG平分∠DEF;由EGAD,可證∠EDH=EHD根據(jù)內(nèi)角和定理,即可得出結(jié)論.

解:(1)AE=AC,AD是∠BAC平分線,

AD垂直平分CE

(2)(1)可知點(diǎn)DCE垂直平分線上的點(diǎn),

CD=DE,

∴∠DCE=DEC

EFBC

∴∠DCE=CEF=DEC,

EG平分∠DEF

EGAD,EG=EG,

DEGHEG(ASA),

∴△DEH是等腰三角形,且ED=EH

∴∠EDH=EHD,

∵∠BCE=40°,

∴∠DEH=2BCE=80°,

∴∠EHD=(180°﹣80°)=50°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①、②、③,正三角形ABC、正方形ABCD、正五邊形ABCDE分別是⊙O的內(nèi)接三角形、內(nèi)接四邊形、內(nèi)接五邊形,點(diǎn)M、N分別從點(diǎn)B,C開始,以相同的速度中⊙O上逆時(shí)針運(yùn)動(dòng).

(1)求圖①中∠APB的度數(shù);
(2)圖②中,∠APB的度數(shù)是 , 圖③中∠APB的度數(shù)是;
(3)根據(jù)前面探索,你能否將本題推廣到一般的正n邊形情況?若能,寫出推廣問題和結(jié)論;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖: 下面是一道證明題,劉老師給同學(xué)們講解了思路,請(qǐng)將證明過程和每一步的理由補(bǔ)充完整.

已知:∠A=EADBE,求證:∠1=2

證明:ADBE(已知)

A=

A=E ( 已知 )

E= (等量代換)

DEAC( )

1=2( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[感知發(fā)現(xiàn)]:如圖,是一個(gè)“豬手”圖,ABCD,點(diǎn)E在兩平行線之間,連接BE,DE ,我們發(fā)現(xiàn):∠E=B+D

證明如下:過E點(diǎn)作EFAB

B=1(兩直線平行,內(nèi)錯(cuò)角相等.)

ABCD(已知)

CDEF(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.)

2=D(兩直線平行,內(nèi)錯(cuò)角相等.)

1+2=B+D(等式的性質(zhì)1.)

即:∠E=B+D

[類比探究]:如圖是一個(gè)“子彈頭”圖,ABCD,點(diǎn)E在兩平行線之間,連接BEDE.試探究∠E+B+D=360°.寫出證明過程.

[創(chuàng)新應(yīng)用]:

(1).如圖一,是兩塊三角板按如圖所示的方式擺放,使直角頂點(diǎn)重合,斜邊平行,請(qǐng)直接寫出∠1的度數(shù).

(2).如圖二,將一個(gè)長(zhǎng)方形ABCD按如圖的虛線剪下,使∠1=120,∠FEQ=90°. 請(qǐng)直接寫出∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某開發(fā)區(qū)有一塊四邊形的空地,如圖所示,現(xiàn)計(jì)劃在空地上種植草皮,經(jīng)測(cè)量,AB=3mBC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問要多少投入?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道對(duì)于一個(gè)圖形,通過不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.例如:由圖1可得到.

1)寫出由圖2所表示的數(shù)學(xué)等式:________.

2)寫出由圖3所表示的數(shù)學(xué)等式:________.

3)已知實(shí)數(shù),,滿足,.

①求的值.

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖1ADBC的一張紙條,按圖1→2→3,把這一紙條先沿EF折疊并壓平,再沿BF折疊并壓平,若圖3中∠CFE=18°,則圖2中∠AEF的度數(shù)為(  。

A.120°B.108°C.126°D.114°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(﹣2,0),則下列結(jié)論:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0,其中正確結(jié)論的個(gè)數(shù)是( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,∠ADC的平分線交AB于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,AG⊥DE,垂足為G.若AG=4 ,則△BEF的面積是( )

A.
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案