如圖,在正方形ABCD中,E、F分別是BC、CD上的點,且∠EAF=45°,則有結(jié)論EF=BE+FD成立;
(1)如圖,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC、CD上的點,且∠EAF是∠BAD的一半,那么結(jié)論EF=BE+FD是否仍然成立?若成立,請證明;若不成立,請說明理由;
(2)若將(1)中的條件改為:在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長BC到點E,延長CD到點F,使得∠EAF仍然是∠BAD的一半,則結(jié)論EF=BE+FD是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明.
解:(1)結(jié)論EF=BE+FD成立. 1分
延長EB到G,使BG=DF,連接AG.
∵∠ABG=∠D=90°,AB=AD,
∴△ABG≌△ADF.
∴AG=AF且∠1=∠2.
∴∠1+∠3=∠2+∠3=∠BAD.
∴∠GAE=∠EAF.
又AE=AE,
∴△AEG≌△AEF.∴EG=EF.
即EF=BE+BG=BE+FD. 3分
(2)結(jié)論EF=BE+FD不成立,
應(yīng)當(dāng)是EF=BE-FD. 4分
在BE上截取BG,使BG=DF,連接AG.
∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
∴∠B=∠ADF.
∵AB=AD,
∴△ABG≌△ADF.∴AG=AF.
∵∠1=∠2,
∴∠1+∠3=∠2+∠3=∠BAD.
∴∠GAE=∠EAF.
∵AE=AE,
∴△AEG≌△AEF.∴EG=EF
即EF=BE-BG=BE-FD. 7分
科目:初中數(shù)學(xué) 來源: 題型:
6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com