【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣x+1與y軸交于點D.

(1)求拋物線的解析式;

(2)證明:△DBO∽△EBC;

(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標(biāo),若不存在,請說明理由.

【答案】(1)y=x2﹣2x﹣3;(2)詳見解析;(3)符合條件的P點坐標(biāo)為P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣).

【解析】

試題分析:(1)先求出點C的坐標(biāo),在由BO=OC=3AO,確定出點B,A的坐標(biāo),最后用待定系數(shù)法求出拋物線解析式;(2)先求出點A,B,C,D,E的坐標(biāo),從而求出BC=3,BE=2,CE=,OD=1,OB=3,BD=,求出比值,得到得出結(jié)論;(3)設(shè)出點P的坐標(biāo),表示出PB,PC,求出BC,分三種情況計算即可.

試題解析:(1)∵拋物線y=ax2+bx﹣3,

∴c=﹣3,

∴C(0,﹣3),

∴OC=3,

∵BO=OC=3AO,

∴BO=3,AO=1,

∴B(3,0),A(﹣1,0),

∵該拋物線與x軸交于A、B兩點,

,

∴拋物線解析式為y=x2﹣2x﹣3,

(2)由(1)知,拋物線解析式為y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴E(1,﹣4),

∵B(3,0),A(﹣1,0),C(0,﹣3),

∴BC=3,BE=2,CE=,

∵直線y=﹣x+1與y軸交于點D,

∴D(0,1),

∵B(3,0),

∴OD=1,OB=3,BD=,

,,,

,

∴△BCE∽△BDO,

(3)存在,

理由:設(shè)P(1,m),

∵B(3,0),C(0,﹣3),

∴BC=3,PB=,PC=,

∵△PBC是等腰三角形,

①當(dāng)PB=PC時,

=,

∴m=﹣1,

∴P(1,﹣1),

②當(dāng)PB=BC時,

∴3=,

∴m=±,

∴P(1,)或P(1,﹣),

③當(dāng)PC=BC時,

∴3=,

∴m=﹣3±,

∴P(1,﹣3+)或P(1,﹣3﹣),

∴符合條件的P點坐標(biāo)為P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+)或P(1,﹣3﹣).

考點:二次函數(shù)的綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點C是線段AB上的一點,如果線段AC=8cm,線段BC=4cm,則線段AC和BC的中點間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知代數(shù)式a2+a的值是5,則代數(shù)式2a2+2a+2008的值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,ABC=90°BEAC于點E,DACADAB,AK平分∠CAB,交線段BE于點F,交邊CB于點K

1)在圖中找出一對全等三角形,并證明;

2)求證:FDBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在△ABC中,AC=BC=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經(jīng)過點C,并且與CB的夾角∠PCB=α,斜邊PNAC于點D.

(1)當(dāng)PN∥BC時,判斷△ACP的形狀,并說明理由;

(2)點P在滑動時,當(dāng)AP長為多少時,△ADP△BPC全等,為什么?

(3)點P在滑動時,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大;若不可以,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰三角形,BC=8,AB , AC的長是關(guān)于x的一元二次方程x2-10x+k=0的兩根,則(  )
A.k=16
B.k=25
C.k=-16或k=-25
D.k=16k=25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=3x+2沿y軸向下平移4個單位,則平移后直線與y軸的交點坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a2=(﹣3)2 , 那么a等于(
A.3
B.﹣3
C.±3
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在國家政策的宏觀調(diào)控下,某市的商品房成交均價由去年10月份的7000元/m2下降到12月份的5670元/m2 , 則11、12兩月平均每月降價的百分率是%。

查看答案和解析>>

同步練習(xí)冊答案