【題目】甲、乙兩組同時加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量y(件)與時間x(時)的函數(shù)圖象如圖所示.
(1)直接寫出甲組加工零件的數(shù)量y與時間x之間的函數(shù)關(guān)系式;
(2)求乙組加工零件總量a的值;
(3)甲、乙兩組加工出的零件合在一起裝箱,每滿300件裝一箱,零件裝箱的時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?
【答案】(1)y=60x(0≤x≤6);(2)a=300;(3)經(jīng)過3小時恰好裝滿第1箱.
【解析】
(1)利用待定系數(shù)法求一次函數(shù)解析式即可;
(2)利用乙的原來加工速度得出更換設(shè)備后乙組的工作速度,計算即可;
(3)分時間段討論,假設(shè)經(jīng)過x小時恰好裝滿第1箱,列方程求解即可.
解:(1)∵圖象經(jīng)過原點及(6,360),
∴設(shè)解析式為:y=kx,
∴6k=360,解得k=60,
∴y=60x(0≤x≤6);
故答案為y=60x(0≤x≤6);
(2)乙2小時加工100件,
∴乙的加工速度是:每小時50件,
∵乙組在更換設(shè)備后工作效率是原來的2倍.
∴更換設(shè)備后,乙組的工作速度是:每小時加工50×2=100(件),
a=100+100×(4.8–2.8)=300;
(3)乙組更換設(shè)備后,乙組加工的零件的個數(shù)y與時間x的函數(shù)關(guān)系式為:
y=100+100(x–2.8)=100x–180,
當(dāng)0≤x≤2時,60x+50x=300,解得x=(不合題意舍去);
當(dāng)2<x≤2.8時,100+60x=300,解得x=(不合題意舍去);
∵當(dāng)2.8<x≤4.8時,60x+100x–180=300,
解得x=3,
∴經(jīng)過3小時恰好裝滿第1箱.
答:經(jīng)過3小時恰好裝滿第1箱.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,AC=FC.
(1)求證:AC是⊙O的切線;
(2)已知圓的半徑R=5,EF=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù):
在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常常可以找到解決問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABC的AC和BC兩邊上分別取一點X和Y,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:
第一步,在CA上作出一點D,使得CD=CB,連接BD.第二步,在CB上取一點Y',作Y'Z∥CA,交BD于點Z',并在AB上取一點A',使Z'A'=Y'Z'.第三步,過點A作AZ∥A'Z',交BD于點Z.第四步,過點Z作ZY∥AC,交BC于點Y,再過點Y作YX∥ZA,交AC于點X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常常可以找到解決問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABC的AC和BC兩邊上分別取一點X和Y,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:
第一步,在CA上作出一點D,使得CD=CB,連接BD.第二步,在CB上取一點Y',作Y'Z∥CA,交BD于點Z',并在AB上取一點A',使Z'A'=Y'Z'.第三步,過點A作AZ∥A'Z',交BD于點Z.第四步,過點Z作ZY∥AC,交BC于點Y,再過點Y作YX∥ZA,交AC于點X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
任務(wù):(1)請根據(jù)上面的操作步驟及部分證明過程,判斷四邊形AXYZ的形狀,并加以證明;
(2)請再仔細(xì)閱讀上面的操作步驟,在(1)的基礎(chǔ)上完成AX=BY=XY的證明過程;
(3)上述解決問題的過程中,通過作平行線把四邊形BA'Z'Y'放大得到四邊形BAZY,從而確定了點Z,Y的位置,這里運用了下面一種圖形的變化是 .
A.平移 B.旋轉(zhuǎn) C.軸對稱 D.位似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為1的正方形ABCD中,P是對角線AC上的一個動點(與點A. C不重合),過點P作PE⊥PB,PE交射線DC于點E,過點E作EF⊥AC,垂足為點F,當(dāng)點E落在線段CD上時(如圖),
(1)求證:PB=PE;
(2)在點P的運動過程中,PF的長度是否發(fā)生變化?若不變,試求出這個不變的值,若變化,試說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC的中點,將△ADE繞點A按順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°)得到△AD'E′,連接BD′、CE′,如圖1.
(1)求證:BD′=CE';
(2)如圖2,當(dāng)α=60°時,設(shè)AB與D′E′交于點F,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C、E分別在直線AB、DF上,小華想知道∠ACE和∠DEC是否互補(bǔ),但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結(jié)CF,再找出CF的中點O,然后連結(jié)EO并延長EO和直線AB相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補(bǔ),而且他還發(fā)現(xiàn)BC=EF.小華的想法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣1,0),B(4,0),C(0,3)三點,D為直線BC上方拋物線上一動點,DE⊥BC于E.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,求線段DE長度的最大值;
(3)如圖2,設(shè)AB的中點為F,連接CD,CF,是否存在點D,使得△CDE中有一個角與∠CFO相等?若存在,求點D的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=2的拋物線經(jīng)過點A(-1,0),C(0,5)兩點,與x軸另一交點為B,已知M(0,1),E(a,0),F(a+1,0),點P是第一象限內(nèi)的拋物線上的動點.
(1)求此拋物線的解析式;
(2)當(dāng)a=1時,求四邊形MEFP面積的最大值,并求此時點P的坐標(biāo);
(3)若△PCM是以點P為頂點的等腰三角形,求a為何值時,四邊形PMEF周長最小?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,按下列步驟作圖:①以點B為圓心,適當(dāng)長為半徑畫弧,與AB,BC分別交于點D,E;②分別以D,E為圓心,大于 DE的長為半徑畫弧,兩弧交于點P;③作射線BP交AC于點F;④過點F作FG⊥AB于點G.下列結(jié)論正確的是( )
A. CF=FG B. AF=AG C. AF=CF D. AG=FG
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com