【題目】如圖(1)是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬為時(shí),拱頂與水面距離為.
(1)請(qǐng)你在圖(2)中,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使該拋物線拱橋的函數(shù)關(guān)系式符合形式,并求此時(shí),函數(shù)關(guān)系式;
(2)當(dāng)水面上升時(shí),求水面寬度.
【答案】(1);(2).
【解析】
(1)以拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),線段的中垂線為軸建立坐標(biāo)系,再利用待定系數(shù)法求得函數(shù)解析式;
(2)求出(1)中所求函數(shù)解析式時(shí)的值,據(jù)此可得.
(1)建立平面直角坐標(biāo)系,則通過畫圖可得知為原點(diǎn),
拋物線以軸為對(duì)稱軸,且經(jīng)過、兩點(diǎn),拋物線頂點(diǎn)坐標(biāo)為,
通過以上條件可設(shè)頂點(diǎn)式,其中可通過代入點(diǎn)坐標(biāo),
到拋物線解析式得出:,
所以拋物線解析式為;
(2)水面上升m,
,
故,
解得:,,
則水面的寬為().
答:水面寬度為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=50 cm,EF=25 cm,測(cè)得邊DF離地面的高度AC=1.6 m,CD=10 m,則樹高AB等于( )
A. 4 m
B. 5 m
C. 6.6 m
D. 7.7 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P從點(diǎn)A沿AC向C以2cm/s的速度移動(dòng),到C即停,點(diǎn)Q從點(diǎn)C沿CB向B以1cm/s的速度移動(dòng),到B就停.
(1)若P、Q同時(shí)出發(fā),經(jīng)過幾秒鐘S△PCQ=2cm2;
(2)若點(diǎn)Q從C點(diǎn)出發(fā)2s后點(diǎn)P從點(diǎn)A出發(fā),再經(jīng)過幾秒△PCQ與△ACB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中O是原點(diǎn),矩形OABC的對(duì)角線相交于點(diǎn)P,頂點(diǎn)C的坐標(biāo)是(0,3),∠ACO=30°,將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)150°后點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一空曠場(chǎng)地上設(shè)計(jì)一落地為矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m長(zhǎng)的繩子一端固定在B點(diǎn)處,小狗在不能進(jìn)入小屋內(nèi)的條件下活動(dòng),其可以活動(dòng)的區(qū)域面積為S(m2).
(1)如圖1,若BC=4m,則S=_____m2.
(2)如圖2,現(xiàn)考慮在(1)中矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其他條件不變,則在BC的變化過程中,當(dāng)S取得最小值時(shí),邊BC的長(zhǎng)為____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點(diǎn)A1,A2,A3…和點(diǎn)C1,C2,C3…分別在直線y=x+1和x軸上,則點(diǎn)Bn的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品原價(jià)為100元,第一次漲價(jià),第二次在第一次的基礎(chǔ)上又漲價(jià),設(shè)平均每次增長(zhǎng)的百分?jǐn)?shù)為x,那么x應(yīng)滿足的方程是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在網(wǎng)格中的位置如圖所示(每個(gè)小正方形邊長(zhǎng)為1),AD⊥BC于D,下列選項(xiàng)中,錯(cuò)誤的是( 。
A. sinα=cosα B. tanC=2 C. sinβ= D. tanα=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com