ABC上有一點(diǎn)P(0,2),將∆ABC先沿軸負(fù)方向平移2個(gè)單位長度,再沿軸正方向平移3個(gè)單位長度,得到的新三角形上與點(diǎn)P相對應(yīng)的點(diǎn)的坐標(biāo)是               。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),Rt ∆ABC中,垂足為D.AF平分∠CAB.交CD于點(diǎn)E,交CB于點(diǎn)F.

1.求證:CE=CF;

2.將圖(1)中的∆ADE沿AB向右平移到∆A'D'E'的位置,使點(diǎn)E’落在BC邊上,其它條件不變,如圖(2)所示.試猜想:BE’與CF有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在∆ABC中,CD平分∠ACB,DE//AC,DC//EF,則與∠ACD相等角有____個(gè).

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省佛山市南海區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

請嘗試解決以下問題:

(1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,

 

 

由旋轉(zhuǎn)可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點(diǎn)G,B,F(xiàn)在同一條直線上.

∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,   ∴∠1+∠3=45°.

即∠GAF=∠_________.

又AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

(2)運(yùn)用(1)解答中所積累的經(jīng)驗(yàn)和知識,完成下題:

如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.

 

 

(2)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若∆ABC固定不動(dòng),∆AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,Ð1 = Ð2,ÐB = ÐD,AB = DE = 5,BC = 4.

(1)求證:∆ABC∽∆ADE ;

(2)求AD的長。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆河南省鄧州市八年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,∆ABC中,D為AB的中點(diǎn),E為AC上一點(diǎn),過D作DF∥BE交AC于O,EF∥AB。

 

(1)猜想:OD與OF之間的關(guān)系是           。

(2)證明你的猜想。

 

查看答案和解析>>

同步練習(xí)冊答案