【題目】如圖,正方形的邊長為5,,,連接,則線段的長為(

A.B.C.D.

【答案】C

【解析】

延長BGCH于點E,根據(jù)正方形的性質證明△ABG≌△CDH≌△BCE,可得GE=BE-BG=1,HE=CH-CE=1,∠HEG=90°,由勾股定理可得GH的長.

解:如圖,延長BGCH于點E,

在△ABG和△CDH中,

,

∴△ABG≌△CDHSSS),

AG2+BG2=AB2,

∴∠1=5,∠2=6,∠AGB=CHD=90°,

∴∠1+2=90°,∠5+6=90°,

又∵∠2+3=90°,∠4+5=90°,

∴∠1=3=5,∠2=4=6,

在△ABG和△BCE中,

,

∴△ABG≌△BCEASA),

BE=AG=4CE=BG=3,∠BEC=AGB=90°,

GE=BEBG=4-3=1,

同理可得:HE=1,

RtGHE中,GH=,

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國派遣三艘海監(jiān)船在南海保護中國漁民不受菲律賓的侵犯.在雷達顯示圖上,標明了三艘海監(jiān)船的坐標為、,(單位:海里)三艘海監(jiān)船安裝有相同的探測雷達,雷達的有效探測范圍是半徑為的圓形區(qū)域(只考慮在海平面上的探測).

(1)若在三艘海監(jiān)船組成的區(qū)域內沒有探測盲點,則雷達的有效探測半徑至少為________海里;

(2)某時刻海面上出現(xiàn)一艘菲律賓海警船,在海監(jiān)船測得點位于南偏東方向上,同時在海監(jiān)船測得位于北偏東方向上,海警船正以每小時海里的速度向正西方向移動,我海監(jiān)船立刻向北偏東方向運動進行攔截,問我海監(jiān)船至少以多少速度才能在此方向上攔截到菲律賓海警船?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的外角,的平分線所在的直線分別與的平分線交于點

的度數(shù);

連接_

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】聰聰參加我市電視臺組織的“陽光杯”智力競答節(jié)目,答對最后兩道單選題就順利通關,第一道單選題有個選項,第二道單選題有4個選項,這兩道題聰聰都不會,不過聰聰還有兩個“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果聰聰兩次“求助”都在第一道題中使用,那么聰聰通關的概率是   

(2)如果聰聰將每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形,,,,

1)求四邊形的面積;

2)如圖2,以為坐標原點,以所在直線為軸、軸建立直角坐標系,點軸上,若,求的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關部門接到求救信號后,立即調遣一架直升飛機和一艘剛在南海巡航的漁政船前往救援.當飛機到達距離海面3000米的高空C處,測得A處漁政船的俯角為60°,測得B處發(fā)生險情漁船的俯角為30°,請問:此時漁政船和漁船相距多遠?(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOBC的頂點A、B、C在⊙O上,過點C作DE∥AB交OA延長線于D點,交OB延長線于點E .

(1)求證:CE是⊙O的切線;

(2)若OA=1,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 O 是等邊△ABC 內一點,∠AOB105°,∠BOC 等于α,將△BOC 繞點 C 按 順時針方向旋轉 60°得△ADC,連接 OD.

1)求證:△COD 是等邊三角形.

2)求∠OAD 的度數(shù).

3)探究:當α為多少度時,△AOD 是等腰三角形?

查看答案和解析>>

同步練習冊答案