【題目】已知:如圖,BDABC的角平分線,且BD=BC,EBD延長線上的一點,BE=BA,過EEFAB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)

【答案】①②④

【解析】

易證△ABD≌△EBC,可得 可得①②正確,再根據(jù)角平分線的性質(zhì)可求得,,根據(jù)可求得④正確.

BD為△ABC的角平分線,


在△ABD和△EBC,

ABD≌△EBC,
①正確;
BD為△ABC的角平分線,,BD=BC,BE=BA,


ABD≌△EBC


②正確;



為等腰三角形,
,
ABD≌△EBC,


BD為△ABC的角平分線,,EC不垂直與BC,

③錯誤; ④正確.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有客房間供游客居住,當(dāng)每間客房的定價為每天元時,客房恰好全部住滿;如果每間客房每天的定價每增加元,就會減少間客房出租.設(shè)每間客房每天的定價增加元,賓館出租的客房為間.求:

關(guān)于的函數(shù)關(guān)系式;

如果某天賓館客房收入元,那么這天每間客房的價格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場禮品柜臺元旦期間購進(jìn)大量賀年卡,一種賀年卡平均每天可售出張,每張盈利元.為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),如果這種賀年卡的售價每降低元,那么商場平均每天可多售出張.商場要想平均每天盈利元,每張賀年卡應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀理解:

我們知道,只用直尺和圓規(guī)不能解決的三個經(jīng)典的希臘問題之一是三等分任意角,但是這個任務(wù)可以借助如圖1所示的一邊上有刻度的勾尺完成,勾尺的直角頂點為P,

寬臂的寬度=PQQRRS,(這個條件很重要哦。┕闯叩囊贿MN滿足MN,Q三點共線(所以PQMN).

下面以三等分∠ABC為例說明利用勾尺三等分銳角的過程:

第一步:畫直線DE使DEBC,且這兩條平行線的距離等于PQ;

第二步:移動勾尺到合適位置,使其頂點P落在DE上,使勾尺的MN邊經(jīng)過點B,同時讓點R落在∠ABCBA邊上;

第三步:標(biāo)記此時點Q和點P所在位置,作射線BQ和射線BP

請完成第三步操作,圖中∠ABC的三等分線是射線      

2)在(1)的條件下補全三等分∠ABC的主要證明過程:

   ,BQPR,

BPBR.(線段垂直平分線上的點與這條線段兩個端點的距離相等)

∴∠   =∠   

PQMN,PTBC,PTPQ,

∴∠   =∠   

(角的內(nèi)部到角的兩邊距離相等的點在角的平分線上)

∴∠   =∠   =∠   

3)在(1)的條件下探究:是否成立?如果成立,請說明理由;如果不成立,請在圖2中∠ABC的外部畫出(無需寫畫法,保留畫圖痕跡即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發(fā)沿EA方向運動,連結(jié)PD,以PD為邊,在PD的右側(cè)按如圖所示的方式作等邊△DPF,當(dāng)點P從點E運動到點A時,點F運動的路徑長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、C分別在∠GBE的邊BG、BE上,且AB=ACADBE,∠GBE的平分線與AD交于點D,連接CD

1)求證:AB=AD;

2)求證:CD平分∠ACE

3)猜想∠BDC與∠BAC之間有何數(shù)量關(guān)系?并對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB經(jīng)過x軸上的點A(2,0),且與拋物線相交于B、C兩點,已知B點坐標(biāo)為(1,1) .

(1)求直線和拋物線的解析式;

(2)如果D為拋物線上一點,使得△AOD與△OBC的面積相等,求D點坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為直線AB上的動點(不與A,B重合),作射線DE并繞點D逆時針旋轉(zhuǎn)45°,交直線BC邊于點F,連結(jié)EF.

探究:當(dāng)點E在邊AB上,求證:EF=AE+CF.

應(yīng)用:(1)當(dāng)點E在邊AB上,且AD=2時,則△BEF的周長是______

(2)當(dāng)點E不在邊AB上時,EF,AE,CF三者的數(shù)量關(guān)系是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠B=90°ABDF,AB=3cmBD=8cm,點C是線段BD上一動點,點E是直線DF上一動點,且始終保持ACCE

1)試說明:∠ACB =CED

2)當(dāng)CBD的中點時, ABCEDC全等嗎?若全等,請說明理由;若不全等,請改變BD的長(直接寫出答案),使它們?nèi)取?/span>

3)若AC=CE ,試求DE的長

4)在線段BD的延長線上,是否存在點C,使得AC=CE,若存在,請求出DE的長及AEC的面積;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案