【題目】計(jì)算:(1) 5( m2 )6 -3 (-m4)3 (2) 214×(-)7
(3) (4) (x-y)(y-x)— 2[(x-y)3 ]3
【答案】(1)8m12;(2)-1;(3)-4;(4)-(x-y)9.
【解析】
試題分析:(1)先算冪的乘方和積的乘方,再合并同類項(xiàng)即可求解;
(2)逆用積的乘方即可求解;
(3)先算負(fù)整數(shù)指數(shù)冪,平方,零指數(shù)冪,再計(jì)算加減法即可求解;
(4)先算積的乘方,同底數(shù)冪的乘法,再合并同類項(xiàng)即可求解.
試題解析:(1)5(m2)6-3 (-m4)3
=5m12+3m12
=8m12;
(2)214×(-)7
=(-22×)7
=(-1)7
=-1;
(3)(-)-1+(-2)2×50-()-2
=-4+4×1-4
=-4+4-4
=-4;
(4)(x-y)5(y-x)4-2[(x-y)3]3
=(x-y)9-2(x-y)9
=-(x-y)9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理過(guò)程,請(qǐng)你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁內(nèi)角互補(bǔ),兩直線平行)
∴∠BAE= (兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠M=∠N(兩直線平行,內(nèi)錯(cuò)角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛客車從甲地開(kāi)往乙地,一輛轎車從乙地開(kāi)往甲地,兩車同時(shí)出發(fā),兩車行駛x小時(shí)后,記客車離甲地的距離為y1千米,轎車離甲地的距離為y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖.
(1)根據(jù)圖象,直接寫出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)兩車相遇時(shí),求此時(shí)客車行駛的時(shí)間;
(3)兩車相距200千米時(shí),求客車行駛的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.(﹣a2)3=a5 B.2a2+a2=2a4
C.a(chǎn)3×a﹣2=a D.(a﹣b)2=a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線PA是一次函數(shù)y=x+1的圖象,直線PB是一次函數(shù)y=﹣2x+2的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)求四邊形PQOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅準(zhǔn)備用長(zhǎng)為8cm的銅絲剪成兩段,以圍成兩個(gè)正方形的線圈,設(shè)剪成的兩段銅絲中的一段的長(zhǎng)為xcm,圍成的兩個(gè)正方形的面積之和為Scm2.
(1)求S與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)x取何值時(shí),S取得最小值,并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1,2;乙袋中裝有2個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2.現(xiàn)從甲袋中隨機(jī)抽取一個(gè)小球,將標(biāo)有的數(shù)字記錄為x,再?gòu)囊掖须S機(jī)抽取一個(gè)小球,將標(biāo)有的數(shù)字記錄為y,確定點(diǎn)M的坐標(biāo)為(x,y).
(1)用樹(shù)狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在二次函數(shù)y=x2﹣2x﹣2的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角△ABC中,斜邊AB=5,直角邊BC、AC之長(zhǎng)是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的兩根,則m的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連結(jié)BE、CE.
(1)若a=5,sin∠ACB=,求b.
(2)若a=5,b=10當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長(zhǎng).
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過(guò)程中,使得△ABE與△BCE相似時(shí),求a、b應(yīng)滿足什么條件,并求出此時(shí)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com