【題目】下面說法正確的個數(shù)有(

①方程的非負整數(shù)解只有;②由三條線段首尾順次連接所組成的圖形叫做三角形;③如果,那么是直角三角形;④各邊都相等的多邊形是正多邊形;⑤如果一個三角形只有一條高在三角形的內(nèi)部,那么這個三角形一定是鈍角三角形.

A.0B.1C.2D.3

【答案】A

【解析】

根據(jù)二元一次方程的解的定義可對①進行判斷;根據(jù)三角形的定義對②進行判斷;根據(jù)直角三角形的判定對③進行判斷;根據(jù)正多邊形的定義對④進行判斷;根據(jù)鈍角三角形的定義對⑤進行判斷.

解:①二元一次方程的非負整數(shù)解是x=3y=0x=1,y=3,原來的說法錯誤;

②由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形,原來的說法錯誤;

③如果,那么不是直角三角形,故錯誤;

④各邊都相等,各角也相等的多邊形是正多邊形,故錯誤.

⑤如果一個三角形只有一條高在三角形的內(nèi)部,那么這個三角形是鈍角三角形或直角三角形,故錯誤,

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古運河是揚州的母親河.為打造古運河風(fēng)光帶,現(xiàn)有一段長為180米的河道整治任務(wù)由A、B兩工程隊先后接力完成.A工程隊每天整治12米,B工程隊每天整治8米,共用時20天.

(1)根據(jù)題意,甲、乙兩名同學(xué)分別列出尚不完整的方程組如下:

甲:;乙:.

根據(jù)甲、乙兩名問學(xué)所列的方程組,請你分別指出未知數(shù)x、y表示的意義,然后在方框中補全甲、乙兩名同學(xué)所列的方程組:

甲:x表示______,y表示_______;

乙:x表示_____,y表示_______

(2)A、B兩工程隊分別整治河道多少米.(寫出完整的解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1)∠B+BDC=180°;(2)∠1=2;(3∠3=∠4;(4∠B=∠5

A.1B.2C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行于x軸的直線AC分別交拋物線 (x≥0)與 (x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.

(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當(dāng)滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題: 某校為美化校園,計劃對一些區(qū)域進行綠化,安排了甲、乙兩個工程隊完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且兩隊在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天,求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點為坐標(biāo)原點,點 為第一象限內(nèi)一點,點軸正半軸上,且
1)求點的坐標(biāo);
2)動點以每秒2個單位長度的速度,從點出發(fā),沿軸正半軸勻速運動,設(shè)點的運動時間為秒,的面積為,請用含有的式子表示,并直接寫出的取值范圍;
3)如圖2,在(2)的條件下,點坐標(biāo)為,連接,過點軸的垂線交于點,過點 軸的平行線,在點的運動過程中,直線上是否存在一點,使是以為腰的等腰直角三角形?若存在,求出點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的為(  )

A. ABCD,ADBC

B. ABCD,ADBC

C. ABCDADBC

D. ABCD,ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=6,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點C1處,連接C1B,則BC1的最小值為(
A.2
B.3
C.3
D.2

查看答案和解析>>

同步練習(xí)冊答案