【題目】如圖,已知點(diǎn)A、B分別在反比例函數(shù)(x>0),(k<0,x>0)的圖象上.點(diǎn)B的橫坐標(biāo)為4,且點(diǎn)B在直線y=x﹣5上.
(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.
【答案】(1)k=-4;(2)tan∠ABO=.
【解析】
(1)根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,求得B點(diǎn)的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得k的值;
(2)過(guò)A作AC垂直于y軸,過(guò)B作BD垂直于y軸,易證△AOC∽△OBD,利用反比例函數(shù)k的幾何意義求出兩三角形的面積,進(jìn)一步求得OA與OB的比值,在直角三角形AOB中,利用銳角三角函數(shù)定義即可求出tan∠B的值.
解:(1)∵點(diǎn)B的橫坐標(biāo)為4,且點(diǎn)B在直線y=x﹣5上.
∴點(diǎn)B的縱坐標(biāo)為y=4﹣5=﹣1,
∴B(4,﹣1),
∵B在反比例函數(shù)y=(k<0,x>0)的圖象上
∴k=4×(﹣1)=﹣4;
(2)過(guò)A作AC⊥y軸,過(guò)B作BD⊥y軸,可得∠ACO=∠BDO=90°,
∴∠AOC+∠OAC=90°,
∵OA⊥OB,
∴∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵點(diǎn)A、B分別在反比例函數(shù)y=(x>0),y=(x>0)的圖象上,
∴S△AOC= ,S△OBD=,
∴S△AOC:S△OBD=1:|k|,
∴,
∴,
則在Rt△AOB中,tan∠ABO=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在某一路段,規(guī)定汽車限速行駛,交通警察在此限速路段的道路上設(shè)置了監(jiān)測(cè)區(qū),其中點(diǎn)C、D為監(jiān)測(cè)點(diǎn),已知點(diǎn)C、D、B在同一直線上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的長(zhǎng)(結(jié)果精確到1米)
(2)如果道路AB的限速為60千米/時(shí),一輛汽車通過(guò)AB段的時(shí)間為90秒,請(qǐng)你判斷該車是否是超速,并說(shuō)明理由;參考數(shù)據(jù):sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸正半軸上,且,以為邊在第一象限內(nèi)作正方形,且雙曲線經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)將正方形沿軸負(fù)方向平移得到正方形,當(dāng)點(diǎn)恰好落在雙曲線上時(shí),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線與軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸正半軸交于點(diǎn),.
(1)如圖1,求的值;
(2)如圖2,拋物線的頂點(diǎn)坐標(biāo)是,點(diǎn)是第一象限拋物線上的一點(diǎn),連接交拋物線的對(duì)稱軸于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)是,線段的長(zhǎng)為,求與的函數(shù)關(guān)系式;
(3)如圖3,在(2)的條件下,當(dāng)時(shí),過(guò)點(diǎn)作軸交拋物線于點(diǎn),點(diǎn)是軸下方拋物線上的一個(gè)動(dòng)點(diǎn),連接交軸于點(diǎn),直線經(jīng)過(guò)點(diǎn)交于點(diǎn),連接,過(guò)點(diǎn)作交于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠B=90o,以AB上的一點(diǎn)O為圓心,以OA為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AC·AD=AB·AE;
(2)如果BD是⊙O的切線,D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形和正六邊形邊長(zhǎng)均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時(shí)點(diǎn)經(jīng)過(guò)路徑的長(zhǎng)為___________.若按此方式旋轉(zhuǎn),共完成六次,在這個(gè)過(guò)程中點(diǎn),之間距離的最大值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=6,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使斜邊A′B′過(guò)B點(diǎn),則線段CA掃過(guò)的面積為_____.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形和,,,連接,.若繞點(diǎn)旋轉(zhuǎn),當(dāng)最大時(shí),__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮進(jìn)行摸牌游戲,如圖,他們有四張除牌面數(shù)字不同外、其他地方完全相同的紙牌,牌面數(shù)字分別為4,5,6,7,他們把紙牌背面朝上,充分洗勻后,從這四張紙牌中摸出一張,記下數(shù)字放回后,再次重新洗勻,然后再摸出一張,再次記下數(shù)字,將兩次數(shù)字之和做為對(duì)比結(jié)果.若兩次數(shù)字之和大于11,則小明勝;若兩次數(shù)字之和小于11,則小亮勝.
(1)請(qǐng)你用列表法或樹狀圖列出這個(gè)摸牌游戲中所有可能出現(xiàn)的結(jié)果.
(2)這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com