(1)如圖1,直線m經(jīng)過等腰直角△ABC的頂點(diǎn)A,過點(diǎn)B、C分別作BD⊥m,CE⊥m,垂足分別為D、E,求證:BD+CE=DE;
(2)如圖2,直線m經(jīng)過△ABC的頂點(diǎn)A,AB=AC,在直線m上取兩點(diǎn) D,E,使∠ADB=∠AEC=α,補(bǔ)充∠BAC=______(用α表示),線段BD,CE與DE之間滿足BD+CE=DE,補(bǔ)充條件后并證明;
(3)在(2)的條件中,將直線m繞著點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一個(gè)角度到如圖3的位置,并改變條件∠ADB=∠AEC=______(用α表示).通過觀察或測(cè)量,猜想線段BD,CE與DE之間滿足的數(shù)量關(guān)系,并予以證明.
作業(yè)寶

解:(1)∵BD⊥m,CE⊥m,
∴∠DAB+∠ABD=90°,∠ADB=∠AEC,
∵∠BAC=90°,
∴∠DAB+∠EAC=90°,
∴∠ABD=∠EAC,
在△ADB和△CEA中,
,
∴△ADB≌△CEA(AAS),
∴BD=AE,AD=CE,
∴BD+CE=AD+AE=DE;

(2)補(bǔ)充∠BAC=α,理由如下:
∵∠ADB=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴BD+CE=AE+AD=DE;

(3)補(bǔ)充∠ADB=∠AEC=180°-α,理由如下:
∵∠ADB=180°-α,
∴∠ABD+∠BAD=α,
∵∠BAD+∠CAE=α,
∴∠ABD=∠CAE,
在△ABD和△CAE中,

∴△ABD≌△CAE(AAS),
∴AE=BD,CE=AD,
∴BD+DE=AE+DE=AD=CE;
分析:(1)根據(jù)BD⊥m,CE⊥m,得出∠DAB+∠ABD=90°,∠ADB=∠AEC,再根據(jù)∠BAC=90°,求出∠ABD=∠EAC,在△ADB和△CEA中,根據(jù)“AAS”得出△ADB≌△CEA,從而證出BD+CE=DE;
則AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)補(bǔ)充∠BAC=α,根據(jù)ADB=∠BAC=α,得出∠CAE=∠ABD,在△ADB和△CEA中,根據(jù)AAS證出△ADB≌△CEA,從而得出AE=BD,AD=CE,即可證出BD+CE=DE
(3)補(bǔ)充∠ADB=∠AEC=180°-α,根據(jù)補(bǔ)充的條件得出∠ABD+∠BAD=α,再根據(jù)∠BAD+∠CAE=α,得出∠ABD=∠CAE,再根據(jù)AAS證出△ABD≌△CAE,得出AE=BD,CE=AD,即可證出BD+DE=CE.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì)、三角形的內(nèi)角和定理,關(guān)鍵是根據(jù)全等三角形的判定添加適當(dāng)?shù)臈l件,求出各邊之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)中,直角梯形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),直線y=-
14
x+3經(jīng)過頂點(diǎn)B,與y軸交于頂點(diǎn)C,AB∥OC.
(1)求頂點(diǎn)B的坐標(biāo);
(2)如圖2,直線l經(jīng)過點(diǎn)C,與直線AB交于點(diǎn)M,點(diǎn)O?為點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn),連接CO?,并延長(zhǎng)交直線AB于第一象限的點(diǎn)D,當(dāng)CD=5時(shí),求直線l的解析式;
(3)在(2)的條件下,點(diǎn)P在直線l上運(yùn)動(dòng),點(diǎn)Q在直線OD上運(yùn)動(dòng),以P、Q、B、C為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出點(diǎn)P的坐標(biāo);若不能,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,該直線是某個(gè)一次函數(shù)的圖象,則此函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,在直線l上取A,B兩點(diǎn),使AB=10厘米,若在l上再取一點(diǎn)C,使AC=2厘米,M,N分別是AB,AC中點(diǎn).求MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,兩直線y1=ax+3與y2=
14
x相交于P點(diǎn),當(dāng)y2<y1≤3時(shí),x的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•南崗區(qū)一模)如圖1,直線y=-kx+6k(k>0)與x軸、y軸分別相交于點(diǎn)A、B,且△AOB的面積是24.
(1)求直線AB的解析式;
(2)如圖2,點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位的速度沿折線OA-AB運(yùn)動(dòng);同時(shí)點(diǎn)E從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿y軸正半軸運(yùn)動(dòng),過點(diǎn)E作與x軸平行的直線l,與線段AB相交于點(diǎn)F,當(dāng)點(diǎn)P與點(diǎn)F重合時(shí),點(diǎn)P、E均停止運(yùn)動(dòng).連接PE、PF,設(shè)△PEF的面積為S,點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,過P作x軸的垂線,與直線l相交于點(diǎn)M,連接AM,當(dāng)tan∠MAB=
12
時(shí),求t值.

查看答案和解析>>

同步練習(xí)冊(cè)答案