【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=( )
A. 1B. 2C. 3D. 4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在x軸的正半軸上依次截取OA1=A1A2=A2A3=A3A4=A4A5,過點A1、A2、A3、A4、A5分別作x軸的垂線與反比例函數(shù)y=(x≠0)的圖象相交于點P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2,A2P3A3,A3P4A4,A4P5A5,并設(shè)其面積分別為S1、S2、S3、S4、S5,則S10=_____.(n≥1的整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,現(xiàn)將Rt△ABC繞點A順時針旋轉(zhuǎn)30°得到△AB′C′,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣x+c經(jīng)過A(﹣2,0),B(0,2)兩點,動點P,Q同時從原點出發(fā)均以1個單位/秒的速度運動,動點P沿x軸正方向運動,動點Q沿y軸正方向運動,連接PQ,設(shè)運動時間為t秒
(1)求拋物線的解析式;
(2)當(dāng)BQ=AP時,求t的值;
(3)隨著點P,Q的運動,拋物線上是否存在點M,使△MPQ為等邊三角形?若存在,請求出t的值及相應(yīng)點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以點AB為直徑的⊙O分別與AC,BC交于點E,D,且BD=CD.
(1)求證:∠B=∠C .
(2)過點D作DF⊥OD,過點F作FH⊥AB.若AB=5,CD=,求AH的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處.
(1)連接CF,求證:四邊形AECF是菱形;
(2)若E為BC中點,BC=26,tan∠B=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達(dá)式;
(2)點P是線段BD上一點,當(dāng)PE=PC時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某種品牌的籃球架實物圖與示意圖,已知底座BC=0.6米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.5米,籃板頂端F點到籃框D的距離FD=1.4米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離.(精確到0.1米.參考數(shù)據(jù):cos75°≈0.3,sin75°≈0.9,.tan75°≈3.7,≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進行銷售,能否銷售完這批蜜柚?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com