認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.

探究1:如圖1,在中,的平分線的交點(diǎn),分析發(fā)現(xiàn),理由如下: ∵分別是,的角平分線

(1)探究2:如圖2中, 與外角的平分線的交點(diǎn),試分析有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.

(2)探究3: 如圖3中,是外角與外角的平分線的交點(diǎn),則有怎樣的關(guān)系?(直接寫出結(jié)論)

(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

(4)運(yùn)用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點(diǎn)P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=_____度.

 

【答案】

(1)∠BOC=;(2)∠BOC=90°-;(3);(4)95°

【解析】

試題分析:根據(jù)角平分線的性質(zhì)及三角形外角的性質(zhì)求解即可,注意解本題要有整體意識(shí).

(1)探究2結(jié)論:∠BOC=

理由如下:

∵BO和CO分別是∠ABC和∠ACD的角平分線

 

;

(2)探究3:結(jié)論∠BOC=90°-;

(3)拓展:結(jié)論

(4)運(yùn)用:95°.

考點(diǎn):角平分線的性質(zhì),三角形外角的性質(zhì)

點(diǎn)評(píng):角平分線的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.
探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC=90°+
1
2
∠A
,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線
∠1=
1
2
∠ABC,∠2=
1
2
∠ACB

∠1+∠2=
1
2
(∠ABC+∠ACB)

又∵∠ABC+∠ACB=180°-∠A
∠1+∠2=
1
2
(180 °-∠A)=90°-
1
2
∠A

∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)
=90°+
1
2
∠A

探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.
探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)
結(jié)論:
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問(wèn)題.
探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC={90°}+
1
2
∠A,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線,
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.
(2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.

探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),分析發(fā)現(xiàn)∠BOC=90°+
1
2
∠A,理由如下:
∵BO和CO分別是∠ABC,∠ACB的角平分線
∴∠1+∠2=
1
2
(∠ABC+∠ACB)=
1
2
(180°-∠A)=90°-
1
2
∠A
∴∠BOC=180°-(∠1+∠2)=180°-(90°-
1
2
∠A)=90°+
1
2
∠A
(1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.
(2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點(diǎn),則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
(4)運(yùn)用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點(diǎn)P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=
95
95
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年北京石景山區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問(wèn)題.

探究如圖11-1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC=90°+,理由如下:

∵BO和CO分別是∠ABC和∠ACB的角平分線

1.如圖11-2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.

2.如圖11-3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)

結(jié)論:                                                            .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案