如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.
(1)求△ABC的面積;
(2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點均在⊙O上,當(dāng)圖形L的面積最大時,求⊙O的面積.
考點:
相似形綜合題.
分析:
(1)作AH⊥BC于H,根據(jù)勾股定理就可以求出AH,由三角形的面積公式就可以求出其值;
(2)如圖1,當(dāng)0<x≤1.5時,由三角形的面積公式就可以表示出y與x之間的函數(shù)關(guān)系式,如圖2,當(dāng)1.5<x<3時,重疊部分的面積為梯形DMNE的面積,由梯形的面積公式就可以求出其關(guān)系式;
(3)如圖4,根據(jù)(2)的結(jié)論可以求出y的最大值從而求出x的值,作FO⊥DE于O,連接MO,ME,求得∠DME=90°,就可以求出⊙O的直徑,由圓的面積公式就可以求出其值.
解答:
解:(1)如圖3,作AH⊥BC于H,
∴∠AHB=90°.
∵△ABC是等邊三角形,
∴AB=BC=AC=3.
∵∠AHB=90°,
∴BH=BC=
在Rt△ABC中,由勾股定理,得
AH=.
∴S△ABC==;
(2)如圖1,當(dāng)0<x≤1.5時,y=S△ADE.
作AG⊥DE于G,
∴∠AGD=90°,∠DAG=30°,
∴DG=x,AG=x,
∴y==x2,
∵a=>0,開口向上,在對稱軸的右側(cè)y隨x的增大而增大,
∴x=1.5時,y最大=,
如圖2,當(dāng)1.5<x<3時,作MG⊥DE于G,
∵AD=x,
∴BD=DM=3﹣x,
∴DG=(3﹣x),MF=MN=2x﹣3,
∴MG=(3﹣x),
∴y=,
=﹣;
(3),如圖4,∵y=﹣;
∴y=﹣(x2﹣4x)﹣,
y=﹣(x﹣2)2+,
∵a=﹣<0,開口向下,
∴x=2時,y最大=,
∵>,
∴y最大時,x=2,
∴DE=2,BD=DM=1.作FO⊥DE于O,連接MO,ME.
∴DO=OE=1,
∴DM=DO.
∵∠MDO=60°,
∴△MDO是等邊三角形,
∴∠DMO=∠DOM=60°,MO=DO=1.
∴MO=OE,∠MOE=120°,
∴∠OME=30°,
∴∠DME=90°,
∴DE是直徑,
S⊙O=π×12=π.
點評:
本題考查了等邊三角形的面積公式的運用,梯形的面積公式的運用,勾股定理的運用,圓周角定理的運用,圓的面積公式的運用,等邊三角形的性質(zhì)的運用,二次函數(shù)的性質(zhì)的運用,解答時靈活運用等邊三角形的性質(zhì)是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
A、81
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com