【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
【答案】(1)AC=8,AD=5cm;(2)直線PC與⊙O相切,理由見解析.
【解析】試題分析:(1)、連接BD,根據(jù)AB為直徑,則∠ACB=∠ADB=90°,根據(jù)Rt△ABC的勾股定理求出AC的長度,根據(jù)CD平分∠ACB得出Rt△ABD是等腰直角三角形,從而得出AD的長度;(2)、連接OC,根據(jù)OA=OC得出∠CAO=∠OCA,根據(jù)PC=PE得出∠PCE=∠PEC,然后結(jié)合CD平分∠ACB得出∠ACE=∠ECB,從而得出∠PCB=∠ACO,根據(jù)∠ACB=90°得出∠OCP=90°,從而說明切線.
試題解析:(1)、①如圖,連接BD, ∵AB是直徑, ∴∠ACB=∠ADB=90°,
在RT△ABC中,AC===8cm,
②∵CD平分∠ACB, ∴AD=BD,∴Rt△ABD是直角等腰三角形, ∴AD=AB=×10=5cm;
(2)、直線PC與⊙O相切,
理由:連接OC, ∵OC=OA,∴∠CAO=∠OCA, ∵PC=PE, ∴∠PCE=∠PEC,
∵∠PEC=∠CAE+∠ACE, ∵CD平分∠ACB, ∴∠ACE=∠ECB,∴∠PCB=∠ACO,∵∠ACB=90°,
∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°, OC⊥PC,
∴直線PC與⊙O相切.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個直角三角形的苗圃,由一個正方形花壇和兩塊直角三角形的草皮組成.如果兩個直角三角形的兩條斜邊長分別為4米和6米,則草皮的總面積為( )平方米.
A. 3 B. 9 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.
已知:弧AB.
求作:弧AB所在的圓.
作法:如圖,
(1)在弧AB上任取三個點D,C,E;
(2)連接DC,EC;
(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點為點O.
(4)以 O為圓心,OC長為半徑作圓,所以⊙O即為所求作的弧AB所在的圓.
請回答:該尺規(guī)作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC=2,BC=4,P是AB上一點,連接PC,以PC為直徑作⊙M交BC于D,連接PD,作DE⊥AC于點E,交PC于點G,已知PD=PG,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ;cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ;tan(α+β)=(1﹣tanαtanβ≠0),合理利用這些公式可以將一些角的三角函數(shù)值轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1,利用上述公式計算下列三角函數(shù)①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0,其中正確的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當(dāng)AE=8時,求EF的長;
(2)設(shè)AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關(guān)系式;
②當(dāng)x為何值時,y有最大值,最大值是多少?
(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當(dāng)點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠ADC=60°,BD是一條對角線,點P在邊CD上(與點C,D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,在BD上取一點H,使HQ=HD,連接HQ,AH,PH.
(1)依題意補全圖1;
(2)判斷AH與PH的數(shù)量關(guān)系及∠AHP的度數(shù),并加以證明;
(3)若∠AHQ=141°,菱形ABCD的邊長為1,請寫出求DP長的思路.(可以不寫出計算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)之間成如圖所示的反比例函數(shù)關(guān)系,則眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)解析式為( )
A. y=200x B. y= C. y=100x D. y=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com