如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.

求證:四邊形BECF是平行四邊形.

 

 

【答案】

證明:∵BE⊥AD,BE⊥AD,∴∠AEB=∠DFC=90°。

∵AB∥CD,∴∠A=∠D。

在△AEB與△DFC中,∵∠AEB=∠DFC,AE=DF,∠A=∠D,

∴△AEB≌△DFC(ASA)。∴BE=CF。

∵BE⊥AD,BE⊥AD,∴BE∥CF。

∴四邊形BECF是平行四邊形。

【解析】

試題分析:通過全等三角形(△AEB≌△DFC)的對應(yīng)邊相等證得BE=CF,由“在同一平面內(nèi),同垂直于同一條直線的兩條直線相互平行”證得BE∥CF.則四邊形BECF是平行四邊形。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,則∠C的度數(shù)為
120

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知線段AB=6,延長線段AB到C,使BC=2AB,點(diǎn)D是AC的中點(diǎn),則AC的長為
18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•溫州一模)如圖,已知線段AB,
(1)線段AB為腰作一個(gè)黃金三角形(尺規(guī)作圖,要求保留作圖痕跡,不必寫出作法);
(友情提示:三角形兩邊之比為黃金比的等腰三角形叫做黃金三角形)
(2)若AB=2,求出你所作的黃金三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖①,已知弧AB,用尺規(guī)作圖,作出弧AB的圓心P;
(2)如圖②,若弧AB半徑PA為18,圓心角為120°,半徑為2的⊙O,從弧AB的一個(gè)端點(diǎn)A(切點(diǎn))開始先在外側(cè)滾動(dòng)到另一個(gè)端點(diǎn)B(切點(diǎn)),再旋轉(zhuǎn)到內(nèi)側(cè)繼續(xù)滾動(dòng),最后轉(zhuǎn)回到初始位置,⊙O自轉(zhuǎn)多少周?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知線段AB、CD分別表示甲、乙兩幢樓的高,AB⊥BD,CD⊥BD,從甲樓頂部A處測得乙樓頂部C的仰角α=30°,測得乙樓底部D的俯角β=60°,已知甲樓高AB=24m,求乙樓CD的高.

查看答案和解析>>

同步練習(xí)冊答案