【題目】(﹣2)2013+(﹣2)2014的值為( )
A.2
B.﹣2
C.﹣22013
D.22013
【答案】D
【解析】解:(﹣2)2013+(﹣2)2014=(﹣2)2013×(1﹣2)=22013 .
故選:D.
首先提取公因式(﹣2)2013 , 進(jìn)而合并同類(lèi)項(xiàng)求出即可.
【考點(diǎn)精析】關(guān)于本題考查的因式分解的應(yīng)用,需要了解因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計(jì)算、求值、整除性問(wèn)題、判斷三角形的形狀、解方程才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角三角形中,兩個(gè)銳角的差為40°,則這兩個(gè)銳角的度數(shù)分別為_(kāi)_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)y=(x﹣3)2﹣4圖象的對(duì)稱(chēng)軸為直線(xiàn)l,若點(diǎn)M在直線(xiàn)l上,則點(diǎn)M的坐標(biāo)可能是( )
A.(1,0)
B.(3,0)
C.(﹣3,0)
D.(0,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線(xiàn)過(guò)點(diǎn)C,且對(duì)稱(chēng)軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)A坐標(biāo)及拋物線(xiàn)的解析式.
(2)在圖①中,若點(diǎn)P在線(xiàn)段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱(chēng)軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線(xiàn)于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,己知函數(shù)y=﹣ x+4的圖象與坐標(biāo)軸的交點(diǎn)分別為點(diǎn)A、B,點(diǎn)C與點(diǎn)B關(guān)于x軸對(duì)稱(chēng),動(dòng)點(diǎn)P、Q分別在線(xiàn)段BC、AB上(點(diǎn)P不與點(diǎn)B、C重合).且∠APQ=∠ABO
(1)點(diǎn)A的坐標(biāo)為 , AC的長(zhǎng)為;
(2)判斷∠BPQ與∠CAP的大小關(guān)系,并說(shuō)明理由;
(3)當(dāng)△APQ為等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是
A. 某種彩票中獎(jiǎng)的概率是,買(mǎi)1000張?jiān)摲N彩票一定會(huì)中獎(jiǎng)
B. 了解一批電視機(jī)的使用壽命適合用抽樣調(diào)查
C. 若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S甲=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S乙=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
D. 在一個(gè)裝有白球和綠球的袋中摸球,摸出黑球是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面關(guān)于三角形內(nèi)外角平分線(xiàn)所夾角的探究片段,完成所提出的問(wèn)題.
探究一:如圖1,在△ABC中,已知O是∠ABC與∠ACB的平分線(xiàn)BO和CO的交點(diǎn),通過(guò)分析發(fā)現(xiàn)∠BOC=90°+ ∠A,理由如下:
∵BO和CO分別是∠ABC與∠ACB的平分線(xiàn),
∴∠1= ∠ABC,∠2= ∠ACB;
∴∠1+∠2= (∠ABC+∠ACB)= (180°﹣∠A)=90°﹣ ∠A,
∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣ ∠A)=90°+ ∠A.
(1)探究二:如圖2中,已知O是∠ABC與外角∠ACD的平分線(xiàn)BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?并說(shuō)明理由.
(2)探究二:如圖3中,已知O是外角∠DBC與外角∠ECB的平分線(xiàn)BO和CO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com