如圖,邊長為2的正方形OABC放置在平面直角坐標(biāo)系中,OA在x軸正半軸上,OC在y軸正半軸上,當(dāng)直線y=kx的系數(shù)k從0開始逐漸變大時(shí),直線在正方形上掃過的面積為記為S,則S關(guān)于k的函數(shù)圖象是(  )
分析:由于直線OB的解析式為y=x,該直線的斜率k=1,所以分兩種情況進(jìn)行討論:①0≤k≤1;②k>1,針對每一種情況分別求出S,然后根據(jù)自變量和函數(shù)值的取值范圍運(yùn)用排除法求解即可.
解答:解:∵B(2,2),
∴直線OB的解析式為y=x,其中k=1.
①當(dāng)0≤k≤1時(shí),直線y=kx與AB相交,設(shè)交點(diǎn)為D,則D(2,2k).
S=S△OAD=
1
2
•OA•AD=
1
2
×2×2k=2k;
此時(shí),它的函數(shù)圖象為一條線段,故排除C、D;
②當(dāng)k>1時(shí),直線y=kx與BC相交,設(shè)交點(diǎn)為E,則E(
2
k
,2).
S=S梯形OABE=
1
2
(EB+OA)•AB=
1
2
(2-
2
k
+2)×2=4-
2
k

∵k>1,
∴S隨k的增大而增大,且S無限接近于4,但永遠(yuǎn)不可能等于4,故排除A.
故選B.
點(diǎn)評:本題考查了運(yùn)用分類討論的思想求動(dòng)點(diǎn)的函數(shù)圖象的問題:分別求出每個(gè)時(shí)段的函數(shù)關(guān)系式,然后根據(jù)自變量和函數(shù)值的取值范圍進(jìn)行判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為
π2
的正△ABC,點(diǎn)A與原點(diǎn)O重合,若將該正三角形沿?cái)?shù)軸正方向翻滾一周,點(diǎn)A恰好與數(shù)軸上的點(diǎn)A′重合,則點(diǎn)A′對應(yīng)的實(shí)數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點(diǎn)P依次落在點(diǎn),,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年新人教版九年級(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AC交于點(diǎn)P.
(1)當(dāng)點(diǎn)E坐標(biāo)為(3,0)時(shí),證明CE=EP;
(2)如果將上述條件“點(diǎn)E坐標(biāo)為(3,0)”改為“點(diǎn)E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,用t表示點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案