精英家教網 > 初中數學 > 題目詳情

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結論同時成立的是  

A. B. C. D.

【答案】C

【解析】

利用拋物線開口方向得到a>0,利用拋物線的對稱軸在直線x=1的右側得到b<0,b<-2a,即b+2a<0,利用拋物線與y軸交點在x軸下方得到c<0,也可判斷abc>0,利用拋物線與x軸有2個交點可判斷b2-4ac>0,利用x=1可判斷a+b+c<0,利用上述結論可對各選項進行判斷.

∵拋物線開口向上,

a>0,

∵拋物線的對稱軸在直線x=1的右側,

x=->1,

b<0,b<-2a,即b+2a<0,

∵拋物線與y軸交點在x軸下方,

c<0,

abc>0,

∵拋物線與x軸有2個交點,

∴△=b2-4ac>0,

x=1時,y<0,

a+b+c<0.

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABACO的兩條切線,B,C為切點,連接CO并延長交AB于點D,交O于點E,連接BE,連接AO

1)求證:AOBE;

2)若DE2,tanBEO,求DO的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.

(1)求證:四邊形ADEF為平行四邊形;

(2)當點D為AB中點時,判斷ADEF的形狀;

(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,FG,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y1=ax2+bx+ca≠0)和一次函數y2=kx+nk≠0)的圖象如圖所示,下面有四個推斷:

①二次函數y1有最大值;

②二次函數y1的圖象關于直線x=﹣1對稱

③當x=﹣2時,二次函數y1的值大于0

④過動點Pm0)且垂直于x軸的直線與y1,y2的圖象的交點分別為CD,當點C位于點D上方時,m的取值范圍是m﹣3m﹣1

以上推斷正確的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB,ACO的兩條切線,B,C為切點,連接CO并延長交AB于點D,交O于點E,連接BE,連接AO

1)求證:AOBE

2)若DE2,tanBEO,求DO的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有這樣一個問題:探究函數y的圖象與性質.小彤根據學習函數的經驗,對函數y的圖象與性質進行了探究.

下面是小彤探究的過程,請補充完整:

(1)函數y的自變量x的取值范圍是   ;

(2)下表是yx的幾組對應值:

x

2

1

0

1

2

4

5

6

7

8

y

m

0

1

3

2

m的值為   

(3)如圖所示,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出了圖象的一部分,請根據剩余的點補全此函數的圖象;

(4)觀察圖象,寫出該函數的一條性質   ;

(5)若函數y的圖象上有三個點A(x1,y1)B(x2,y2)、C(x3,y3),且x13x2x3,則y1、y2y3之間的大小關系為   ;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC的頂點坐標分別為A(3,0),B(0,4),C(-3,0).動點M,N同時從A點出發(fā),M沿A→C,N沿折線A→B→C,均以每秒1個單位長度的速度移動,當一個動點到達終點C時,另一個動點也隨之停止移動,移動時間記為t秒.連接MN.

(1)求直線BC的解析式;

(2)移動過程中,將△AMN沿直線MN翻折,點A恰好落在BC邊上點D處,求此時t值及點D的坐標;

(3)當點M,N移動時,記△ABC在直線MN右側部分的面積為S,求S關于時間t的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在同一平面內,將△ABC繞點A旋轉到△AB′C′的位置,使得CC′∥AB,BC與 B′C′交于點P,此時∠BPB′=25°,則∠CAB的大小為_____

查看答案和解析>>

同步練習冊答案