一塊直角三角板XYZ放置在△ABC上,三角板XYZ的兩條直角邊XY、XZ恰好分別經(jīng)過點B、C.△ABC中,∠A=50°. 

(1)如圖1,則∠ABC+∠ACB=             度,∠XBC+∠XCB=            度;

(2)如圖2,改變直角三角板XYZ的位置,使三角板XYZ的兩條直角邊XY、XZ仍然分別經(jīng)過點B、C,那么∠ABX+∠ACX的大小是否變化?若變化,請舉例說明;若不變化,請求出∠ABX+∠ACX的大。

 

 

【答案】

(1)∠ABC+∠ACB=   130°   度,∠XBC+∠XCB=     90°    

(2)∠ABX+∠ACX的大小不變化,∠ABX+∠ACX= 40°.

【解析】(1)根據(jù)三角形的內(nèi)角和定理即可求得∠ABC+∠ACB及∠XBC+∠XCB;

(2)無論怎樣改變直角三角板XYZ的位置,都有∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)= 40°,所以∠ABX+∠ACX的大小不變化。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖,有一塊直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY、XZ分別經(jīng)過點B,C,若∠A=35°,則∠ABX+∠ACX的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,有一塊直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY、XZ分別經(jīng)過點B、C.△ABC中,∠A=30°,則∠ABX+∠ACX=
60°
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、(1)如圖1,有一塊直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY、XZ分別經(jīng)過點B、C.△ABC中,∠A=30°,則∠ABC+∠ACB=
150°
,∠XBC+∠XCB=
90°


(2)如圖2,改變直角三角板XYZ的位置,使三角板XYZ的兩條直角邊XY、XZ仍然分別經(jīng)過B、C,那么∠ABX+∠ACX的大小是否變化?若變化,請舉例說明;若不變化,請求出∠ABX+∠ACX的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、(1)如圖1,有一塊直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY、XZ分別經(jīng)過點B、C、△ABC中,∠A=40°,則∠ABC+∠ACB=
140
度,∠XBC+∠XCB=
90
度;
(2)如圖2,改變(1)中直角三角板XYZ的位置,使三角板XYZ的兩條直角邊XY、XZ仍然分別經(jīng)過點B、C,那么∠ABX+∠ACX的大小是否變化?若變化,請舉例說明;若不變化,請求出∠ABX+∠ACX的大;
(3)如果(1)中的其它條件不變,把“∠A=40°”改成“∠A=n°”,請直接寫出∠ABX+∠ACX的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,有一塊直角三角板XYZ放置在△ABC上,恰好三角板XYZ的兩條直角邊XY、XZ分別經(jīng)過點B、C.△ABC中,∠A=40°,則∠XBA+∠XCA=
50
度.

查看答案和解析>>

同步練習冊答案