【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),①BC與CF的位置關(guān)系為:

②BC,CD,CF之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)

(2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)D在線段CB的延長(zhǎng)線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

(3)拓展延伸

如圖3,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=,CD=BC,請(qǐng)求出GE的長(zhǎng).

【答案】(1)垂直;BC=CF+CD;(2)成立;(3)

【解析】

試題分析:(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;②由正方形ADEF的性質(zhì)可推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)得到CF=BD,∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;

(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論

(3)根據(jù)等腰直角三角形的性質(zhì)得到BC=AB=4,AH=BC=2,求得DH=3,根據(jù)正方形的性質(zhì)得到AD=DE,∠ADE=90°,根據(jù)矩形的性質(zhì)得到NE=CM,EM=CN,由角的性質(zhì)得到∠ADH=∠DEM,根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2,等量代換得到CN=EM=3,EN=CM=3,根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結(jié)論.

試題解析:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB與△FAC中,AD=AF,BAD=CAF,AB=AC,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD;

故答案為:垂直;

②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;

故答案為:BC=CF+CD;

(2)成立,∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB與△FAC中,AD=AF,BAD=CAF,AB=AC,∴△DAB≌△FAC,∴∠B=∠ACF,CF=BD

∴∠ACB+∠ACF=90°,即CF⊥BD;

∵BC=BD+CD,∴BC=CF+CD;

(3)解:過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)證得BC⊥CF,CF=BD=5,∵四邊形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四邊形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH與△DEM中,∵∠ADH=DEM,AHD=DME,AD=DE,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶到處都人從眾”……今年的五一小長(zhǎng)假,相信重慶市民的朋友圈已被重慶太火刷屏了.據(jù)重慶市旅游發(fā)展委員會(huì)公布的數(shù)據(jù)顯示,五一節(jié)四天,重慶共接待境內(nèi)外游客2559萬(wàn)人次,2259萬(wàn)用科學(xué)記數(shù)法表示為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一副三角板按如圖方式放置,則兩條斜邊所形成的鈍角α=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓錐的底面直徑是80cm,母線長(zhǎng)90cm,則圓錐的全面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并回答問題:

材料1:如果一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,記,那么三角形的面積為

古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測(cè)量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式.

我國(guó)南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對(duì)公式②進(jìn)行變形:

這說明海倫公式與秦九韶公式實(shí)質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式.

問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點(diǎn)分別是D、E、F.

(1)求△ABC的面積;

(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以每秒2厘米的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以每秒a厘米的速度由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).
(1)用的代數(shù)式表示PC的長(zhǎng)度;
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按如圖所示的程序計(jì)算:若開始輸入的x值為﹣2,則最后輸出的結(jié)果是( 。

A.352
B.160
C.112
D.198

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:五蓮縣新瑪特購(gòu)物中心第一次用5000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的 倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

20

30

售價(jià)(元/件)

29

40


(1)新瑪特購(gòu)物中心將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?
(2)該購(gòu)物中心第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB的垂直平分線CP交AB于點(diǎn)P,且AP=2PC,現(xiàn)欲在線段AB上求作兩點(diǎn)D,E,使其滿足AD=DC=CE=EB,對(duì)于以下甲、乙兩種作法:

甲:分別作∠ACP、∠BCP的平分線,分別交AB于D、E,則D、E即為所求;
乙:分別作AC、BC的垂直平分線,分別交AB于D、E,則D、E兩點(diǎn)即為所求.
下列說法正確的是( )
A.甲、乙都正確
B.甲、乙都錯(cuò)誤
C.甲正確,乙錯(cuò)誤
D.甲錯(cuò)誤,乙正確

查看答案和解析>>

同步練習(xí)冊(cè)答案