已知:如圖1,拋物線C1y=
1
3
(x-m)2+n
(m>0)的頂點為A,與y軸相交于點B,拋物線C2y=-
1
3
(x+m)2-n
的頂點為C,并與y軸相交于點D,其中點A、B、C、D中的任意三點都不在同一條直線
(1)判斷四邊形ABCD的形狀,并說明理由;
(2)如圖2,若拋物線y=
1
3
(x-m)2+n
 (m>0)的頂點A落在x軸上時,四邊形ABCD恰好是正方形,請你確定m,n的值;
(3)是否存在m,n的值,使四邊形ABCD是鄰邊之比為1:
3
 的矩形?若存在,請求出m,n的值;若不存在,請說明理由.
分析:(1)根據(jù)題目條件可以表示出A(m,n ),C(-m,-n ),可以求得AO=CO,當(dāng)x=時可以求出點B、D的坐標(biāo),從而可以證明BO=DO,CO從而得出結(jié)論.
(2)∵拋物線y=
1
3
(x-m)2+n
 (m>0)的頂點A落在x軸上,可以得出n=0,由四邊形ABCD恰好是正方形,由正方形的性質(zhì)就可以得出OA=OB而建立等量關(guān)系求出其m的值.
(3)∵四邊形ABCD是矩形,由矩形的性質(zhì)可以得出OA=OB從而建立一個等量關(guān)系,由矩形ABCD的鄰邊之比為1:
3
,可以得出,∠ABO=60°或∠ABO=30°,作AH⊥BD,表示出BH,用OB=BH+OH在建立一個等式,從而構(gòu)成方程組,從兩種情況求出方程組的解就可以了.
解答:解:(1)四邊形ABCD是平行四邊形,
∵A(m,n ),C(-m,-n ),
∴點A與點C關(guān)于原點對稱.
∴點O、A、C三點在同一條直線上,
∴OA=OC.
B(0,
1
3
m2+n),D(0,-
1
3
m2-n)
,
∴OB=OD.
∴四邊形ABCD是平行四邊形.

(2)∵拋物線y=
1
3
(x-m)2+n(m>0)
的頂點A落在x軸上,
∴n=0.
∵四邊形ABCD是正方形,
∴OA=OB,即
1
3
m2=m
,
解得:m1=0(不符題意,舍去),m2=3.
此時四邊形ABCD是正方形
∴m=3,n=0.

(3)若四邊形ABCD是矩形,
則OA=OB,即(
1
3
m2+n)2=m2+n2
,
化簡得:
1
9
m4+
2
3
m2n=m2

∵m>0,
∴m2+6n=9
又∵矩形的鄰邊之比為1:
3
,
當(dāng)AB:AD=1:
3
時,∠ABO=60°,
過點A作AH⊥BD于H,則BH=
3
3
m
,
3
3
m+n=
1
3
m2+n
,
m2+6n=9
3
3
m+n=
1
3
m2+n
,
解得:
m=
3
n=1

當(dāng)AD:AB=1:
3
時,∠ABO=30°,
過點A作AH⊥BD于H,則BH=
3
m

m2+6n=9
3
m+n=
1
3
m2 +n
,
解得:
m=3
3
n=-3

答:存在m=
3
,n=1或m=3
3
,n=-3使四邊形ABCD是鄰邊之比為1:
3
的矩形.
點評:本題是一道二次函數(shù)的綜合試題,考查了平行四邊形的判定,正方形的性質(zhì)的運用,矩形的性質(zhì)的運用及三角函數(shù)值的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,拋物線y=ax2+bx過點A(6,3),且對稱軸為直線x=
52
.點B為直線OA下方的拋物線上一動點,點B的橫坐標(biāo)為m.
(1)求該拋物線的解析式;
(2)若△OAB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)如圖2,過點B作直線BC∥y軸,交線段OA于點C,在拋物線的對稱軸上是否存在點D,使△BCD是以D為直角頂點的等腰直角三角形?若存在,求出所有符合條件的點B的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大安市模擬)已知:如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于C點.
(1)求拋物線的解析式及其頂點Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最。堅趫D中畫出點P的位置,并求點P的坐標(biāo);
(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.
①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠(yuǎn),所以當(dāng)點D運動至點Q時,折線D-E-O的長度最長”.這個同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標(biāo);若不能,請簡要說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x-2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設(shè)s=
ED+OPED•OP
,當(dāng)t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶安區(qū)二模)已知:如圖1,拋物線經(jīng)過點O、A、B三點,四邊形OABC是直角梯形,其中點A在x軸上,點C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)若D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,速度為每秒1個單位,移動時間記為t秒.幾秒鐘后線段PD將梯形OABC的面積分成1﹕3兩部分?并求出此時P點的坐標(biāo);
(3)如圖2,作△OBC的外接圓O′,點Q是拋物線上點A、B之間的動點,連接OQ交⊙O′于點M,交AB于點N.當(dāng)∠BOQ=45°時,求線段MN的長.

查看答案和解析>>

同步練習(xí)冊答案