已知AD是△ABC的中線(xiàn),∠ABC=30°,∠ADC=45°,則∠ACB=________度.

105
分析:設(shè)AE=x,過(guò)A作AE⊥BC于E,根據(jù)三角形內(nèi)角和定理求出∠DAE=45°,求出DE、BE、BD、DC、CE的長(zhǎng),根據(jù)銳角三角函數(shù)求出tan∠ACB即可.
解答:解:設(shè)AE=x,
過(guò)A作AE⊥BC,交BC延長(zhǎng)線(xiàn)于E,
∵AE⊥BC,
∴∠AED=∠AEB=90°,
∵∠ADC=45°,
∴∠DAE=180°-90°-45°=45°=∠ADE,
∴AE=DE=x,
∵∠B=30°,
∴AB=2x,
由勾股定理得:BE=x,
∴BD=DC=x-x,
∴CE=x-(x-x)=(2-)x,
∵tan∠ACE===2+,
∵tan75°=tan(45°+30°)==2+
∴∠ACE=75°,
則∠ACB=180°-75°=105°.
故答案為:105°.
點(diǎn)評(píng):本題主要考查對(duì)解直角三角形,三角形的內(nèi)角和定理,勾股定理,垂線(xiàn),等腰三角形的性質(zhì)和判定等知識(shí)點(diǎn)的理解和掌握,能用x表示出一些線(xiàn)段的長(zhǎng)度是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD是△ABC的外角∠EAC的平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓精英家教網(wǎng)于點(diǎn)F,連接FB、FC.
(1)求證:FB=FC;
(2)求證:FB2=FA•FD;
(3)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6cm,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖,已知AD是△ABC的中線(xiàn),AE=EF=FC,下面給出三個(gè)關(guān)系式:①AG:AD=1:2;②GE:BE=1:4;③GE:BE=3:4,其中正確的為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖所示,已知AD是△ABC的中線(xiàn),CE是△ACD的中線(xiàn),S△ACE=4cm2,則S△ABC=
16
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、已知AD是△ABC的角平分線(xiàn),點(diǎn)E、F分別是邊AB,AC的中點(diǎn),連接DE,DF,在不再連接其他線(xiàn)段的前提下,要使四邊形AEDF成為菱形,還需添加一個(gè)條件,這個(gè)條件可以是
AB=AC或∠B=∠C或AE=AF
(答案不唯一).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,已知D是△ABC的邊AB上一點(diǎn),F(xiàn)C∥AB,DF交AC于點(diǎn)E,DE=EF.求證:E是AC的中點(diǎn).
(2)如圖,已知AD是△ABC的角平分線(xiàn),DE∥AC交AB于點(diǎn)E,DF∥AB交AC于點(diǎn)F.求證:四邊形AEDF是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案