【題目】如圖.在中,,,以直角頂點為圓心,長為半徑畫弧交于點,過點作于點,若,則的周長用含的代數(shù)式表示為_______________.
【答案】
【解析】
根據(jù)“,”可知∠B=60°,根據(jù)“以直角頂點為圓心,長為半徑畫弧交于點”可知△ABD是等邊三角形,∠BAD=60°,繼而可知∠DAE=30°,利用直角三角中30°所對的邊是斜邊的一半,即可知AB和BC的長,再利用勾股定理即可求出AC的長,從而可得周長.
∵中,,
∴∠B=60°,BC=2AB
∵以直角頂點為圓心,長為半徑畫弧交于點,
∴AB=AD
∵∠B=60°
∴△ABD是等邊三角形
∴∠BAD=60°,
∴∠DAE=30°,
又∵DE⊥AC
∴△ADE是直角三角形
∴AD=2DE=2a
∴AB=2a,BC=4a
根據(jù)勾股定理有
∴
∴△ABC的周長=AB+AC+BC=
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=2AC, 點D在BC上,且∠CAD=∠B,點E是AB的中點,聯(lián)結(jié)CE與AD交于點G,點F在BC上,且∠CEF=∠BAC.
(1)若∠BAC=90°,如圖1,求證: EG+ EF=AC;
(2)若∠BAC=120°,如圖2,請猜想線段EG,EF和AC之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,A點坐標為(3,4),將線段OA繞原點O逆時針旋轉(zhuǎn)90°得到線段OA′,則點A′的坐標是( )
A. (﹣4,3) B. (﹣3,4)
C. (3,﹣4) D. (4,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】岳陽王家河流域綜合治理工程已正式啟動,其中某項工程,若由甲、乙兩建筑隊合做,6個月可以完成,若由甲、乙兩隊獨做,甲隊比乙隊少用5個月的時間完成.
(1)甲、乙兩隊單獨完成這項工程各需幾個月的時間?
(2)已知甲隊每月施工費用為15萬元,比乙隊多6萬元,按要求該工程總費用不超過141萬元,工程必須在一年內(nèi)竣工(包括12個月).為了確保經(jīng)費和工期,采取甲隊做a個月,乙隊做b個月(a、b均為整數(shù))分工合作的方式施工,問有哪幾種施工方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰在平面直角坐標系中的位置如圖,點坐標為,點坐標為.
(1)若將沿軸向左平移個單位,此時點恰好落在反比例函數(shù)的圖像上,求的值;
(2)若將繞點順時針旋轉(zhuǎn),點恰好落在反比例函數(shù)的圖像上,求的值;
(3)若將繞點順時針旋轉(zhuǎn)度到位置,當點、恰好同時落在(2)中所確定的反比例函數(shù)的圖像上時,請直接寫出經(jīng)過點、且以軸為對稱的拋物線解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)若點D在y軸負半軸上,且滿足S△COD=S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,都被分成了3等份,并在每份內(nèi)均標有數(shù)字,如圖所示.規(guī)則如下:
①分別轉(zhuǎn)動轉(zhuǎn)盤;
②兩個轉(zhuǎn)盤停止后,將兩個指針所指份內(nèi)的數(shù)字相乘(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).
【1】用列表法或樹狀圖分別求出數(shù)字之積為3的倍數(shù)和數(shù)字之積為5的倍數(shù)的概率;
【2】小明和小亮想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小明得2分;數(shù)字之積為5的倍數(shù)時,小亮得3分.這個游戲?qū)﹄p方公平嗎?請說明理由;認為不公平的,試修改得分規(guī)定,使游戲?qū)﹄p方公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABE,△BCD均為等邊三角形,點A,B,C在同一條直線上,連接AD,EC,AD與EB相交于點M,BD與EC相交于點N,下列說法正確的有:___________
①AD=EC;②BM=BN;③MN∥AC;④EM=MB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com