【題目】如圖.在中,,以直角頂點為圓心,長為半徑畫弧交于點,過點于點,若,則的周長用含的代數(shù)式表示為_______________

【答案】

【解析】

根據(jù)“,”可知∠B=60°,根據(jù)“以直角頂點為圓心,長為半徑畫弧交于點”可知△ABD是等邊三角形,∠BAD=60°,繼而可知∠DAE=30°,利用直角三角中30°所對的邊是斜邊的一半,即可知AB和BC的長,再利用勾股定理即可求出AC的長,從而可得周長.

中,,

∴∠B=60°,BC=2AB

∵以直角頂點為圓心,長為半徑畫弧交于點,

∴AB=AD

∵∠B=60°

∴△ABD是等邊三角形

∴∠BAD=60°,

∴∠DAE=30°,

又∵DE⊥AC

∴△ADE是直角三角形

∴AD=2DE=2a

∴AB=2a,BC=4a

根據(jù)勾股定理有

∴△ABC的周長=AB+AC+BC=

故答案為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=2AC, DBC上,且∠CAD=B,點EAB的中點,聯(lián)結(jié)CEAD交于點G,FBC上,且∠CEF=BAC.

(1)若∠BAC=90°,如圖1,求證: EG+ EF=AC;

(2)若∠BAC=120°,如圖2,請猜想線段EGEFAC之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCDBE均為等腰直角三角形.

1)求證:ADCE

2)猜想:ADCE是否垂直?若垂直,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A點坐標為(3,4),將線段OA繞原點O逆時針旋轉(zhuǎn)90°得到線段OA′,則點A′的坐標是(

A. (﹣4,3) B. (﹣3,4)

C. (3,﹣4) D. (4,﹣3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】岳陽王家河流域綜合治理工程已正式啟動,其中某項工程,若由甲、乙兩建筑隊合做,6個月可以完成,若由甲、乙兩隊獨做,甲隊比乙隊少用5個月的時間完成.

1)甲、乙兩隊單獨完成這項工程各需幾個月的時間?

2)已知甲隊每月施工費用為15萬元,比乙隊多6萬元,按要求該工程總費用不超過141萬元,工程必須在一年內(nèi)竣工(包括12個月).為了確保經(jīng)費和工期,采取甲隊做a個月,乙隊做b個月(a、b均為整數(shù))分工合作的方式施工,問有哪幾種施工方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰在平面直角坐標系中的位置如圖,點坐標為,點坐標為

1)若將沿軸向左平移個單位,此時點恰好落在反比例函數(shù)的圖像上,求的值;

2)若將繞點順時針旋轉(zhuǎn),點恰好落在反比例函數(shù)的圖像上,求的值;

3)若將繞點順時針旋轉(zhuǎn)位置,當點、恰好同時落在(2)中所確定的反比例函數(shù)的圖像上時,請直接寫出經(jīng)過點且以軸為對稱的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.

(1)求k、b的值;

(2)若點Dy軸負半軸上,且滿足SCOD=SBOC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,都被分成了3等份,并在每份內(nèi)均標有數(shù)字,如圖所示.規(guī)則如下:

分別轉(zhuǎn)動轉(zhuǎn)盤;

兩個轉(zhuǎn)盤停止后,將兩個指針所指份內(nèi)的數(shù)字相乘(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).

1】用列表法或樹狀圖分別求出數(shù)字之積為3的倍數(shù)和數(shù)字之積為5的倍數(shù)的概率;

2】小明和小亮想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小明得2分;數(shù)字之積為5的倍數(shù)時,小亮得3分.這個游戲?qū)﹄p方公平嗎?請說明理由;認為不公平的,試修改得分規(guī)定,使游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABE,△BCD均為等邊三角形,點A,B,C在同一條直線上,連接AD,EC,AD與EB相交于點M,BD與EC相交于點N,下列說法正確的有:___________

①AD=EC;②BM=BN;③MN∥AC;④EM=MB.

查看答案和解析>>

同步練習冊答案