如圖所示,在平面直角坐標(biāo)系中,M是軸正半軸上一點(diǎn),⊙M與軸的正半軸交于A、B兩點(diǎn),A在B的左側(cè),且OA、OB的長(zhǎng)是方程的兩根,ON是⊙M的切線,N為切點(diǎn),N在第四象限.

(1)求⊙M的直徑;
(2)求直線ON的函數(shù)關(guān)系式;
(3)在軸上是否存在一點(diǎn)T,使△OTN是等腰三角形?若存在,求出T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
詳見解析.

試題分析:(1)由因式分解求出方程的解,確定A,B兩點(diǎn)的坐標(biāo),進(jìn)而求出AB的長(zhǎng)度即⊙M的直徑.
(2)如下圖:求直線ON的解析式,必須求出點(diǎn)N的坐標(biāo).因此可過(guò)點(diǎn)N作NP⊥AB于點(diǎn)P,連接MN,運(yùn)用勾股定理F分別求出ON的長(zhǎng)度,進(jìn)而利用面積求出NP的長(zhǎng)度,即點(diǎn)N縱坐標(biāo)的絕對(duì)值;再次運(yùn)用勾股定理確定OP的長(zhǎng)度,即點(diǎn)N的橫坐標(biāo)的絕對(duì)值.結(jié)合點(diǎn)N位于第四象限確定點(diǎn)N的坐標(biāo),然后利用待定系數(shù)法求直線ON的解析式.
(3)求是否存在點(diǎn)T使ΔOTN為等腰三角形,應(yīng)分類討論:即①當(dāng)ON是等腰三角形的底邊時(shí),則點(diǎn)T應(yīng)在ON的垂直平分線上,利用平行線分線段成比例定理或相似三角形求解;②當(dāng)ON是腰且點(diǎn)O是頂點(diǎn)時(shí),即以點(diǎn)O為圓心、以O(shè)N為半徑作圓與x軸的交點(diǎn)即為所求點(diǎn)T;③當(dāng)ON是腰且點(diǎn)N是頂點(diǎn)時(shí),即以點(diǎn)N為圓心、以O(shè)N為半徑作圓與x軸的交點(diǎn)即為所求點(diǎn)T.
試題解析:
解:(1)由


由圖可知,
∴OA=1,OB=3
∴OB-OA=3-1=2
∴⊙M的直徑等于2
(2)如下圖,連結(jié)MN,過(guò)點(diǎn)N作NP⊥軸于P,過(guò)點(diǎn)N作NQ⊥軸于Q
∵ON是⊙M的切線
∴ON⊥MN且MN=AB=1
在Rt△OMN中,

在Rt△OPN中,
∵點(diǎn)N在第四象限
∴N(,
設(shè)直線ON的函數(shù)關(guān)系式為
把N(,)代入得:



(3)存在,應(yīng)分三種情況討論:
①如圖(1)當(dāng)是等腰三角形的底邊時(shí),頂點(diǎn)的垂直平分線上.
∵ON⊥MN,


,即
②如圖(2),當(dāng)ON是腰且點(diǎn)O是頂點(diǎn)時(shí),以點(diǎn)O為圓心,ON的長(zhǎng)為半徑作圓,交軸于兩點(diǎn).
,
、
③如圖(3),當(dāng)ON是腰且點(diǎn)N是頂點(diǎn)時(shí),以點(diǎn)N為圓心,ON的長(zhǎng)為半徑作圓,交軸于點(diǎn).則,

綜上所述,在軸上存在四個(gè)點(diǎn),使△OTN是等腰三角形,分別是、
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直徑為24的圓中,150度的圓心角所對(duì)的弧長(zhǎng)為                   .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在中,AB是的直徑,與AC交于點(diǎn)D,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知AB是⊙O的直徑,,,那么的度數(shù)是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB為⊙O的直徑,弦CD⊥AB,E為弧BC上一點(diǎn),若∠CEA=,則∠ABD=      °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的半徑為5cm,弦AB的長(zhǎng)為8cm,則圓心O到AB的距離為        cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙O的直徑,若∠BAC=35°,則∠ADC=(       ).
A.35°B.55°C.70°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,點(diǎn)、、上,若,則的大小是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(13,0),直線與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案