【題目】如圖,直線y=-x-3x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)Px軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長度為半徑作⊙P,當(dāng)⊙P與直線AB相切時(shí),點(diǎn)P的坐標(biāo)是_______

【答案】-,0)或P-0

【解析】

根據(jù)函數(shù)解析式求得A-4,0),B0-3),得到OA=4,OB=3,根據(jù)勾股定理得到AB=5,設(shè)⊙P與直線AB相切于D,連接PD,則PDAB,PD=1,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

∵直線y=-x-3x軸于點(diǎn)A,交y軸于點(diǎn)B,

∴令x=0,得y=-3,令y=0,得x=-4,

A-4,0),B0-3),

OA=4,OB=3

AB=5,

設(shè)⊙P與直線AB相切于D,連接PD,

PDABPD=1,

∵∠ADP=AOB=90°,∠PAD=BAO

∴△APD∽△ABO,

,

AP=,

OP=OP=

P-,0)或P-,0),

故答案為:(-,0)或P-,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為實(shí)數(shù))

1)當(dāng)時(shí),若= ,則此函數(shù)是一次函數(shù);

2)若它是一個(gè)二次函數(shù),假設(shè),那么:

①當(dāng)時(shí),的增大而減小,請判斷這個(gè)命題的真假并說明理由;

②它一定經(jīng)過哪個(gè)點(diǎn)?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) ()的圖象如圖所示,分析下列四個(gè)結(jié)論:①;②;③;④.其中正確的結(jié)論有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解一元二次方程:

(1)(2x﹣5)2=9

(2)x2﹣4x=96

(3)3x2+5x﹣2=0

(4)2(x﹣3)2=﹣x(3﹣x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知直線分別于軸和軸交于,兩點(diǎn),將拋物線平移,得到拋物線,使拋物線過點(diǎn),兩點(diǎn).

求交點(diǎn),的坐標(biāo);

求拋物線的函數(shù)表達(dá)式;

求拋物線的頂點(diǎn)坐標(biāo)和對稱軸方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x+4的圖象是直線l,設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B

1)求線段AB的長度;

2)設(shè)點(diǎn)M在射線AB上,將點(diǎn)M繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°到點(diǎn)N,以點(diǎn)N為圓心,NA的長為半徑作⊙N

①當(dāng)⊙Nx軸相切時(shí),求點(diǎn)M的坐標(biāo);

②在①的條件下,設(shè)直線ANx軸交于點(diǎn)C,與⊙N的另一個(gè)交點(diǎn)為D,連接MDx軸于點(diǎn)E,直線m過點(diǎn)N分別與y軸、直線l交于點(diǎn)P、Q,當(dāng)APQCDE相似時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到正方形ODEF,連接AF,求的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)邊上移動(dòng)(點(diǎn)不與重合),滿足,且點(diǎn)分別在上。

1)求證:

2)當(dāng)點(diǎn)移動(dòng)到中點(diǎn)時(shí),求證:點(diǎn)關(guān)于直線的對稱點(diǎn)在直線上。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:RtOAB在直角坐標(biāo)系中的位置如圖所示,P(3,4)OB的中點(diǎn),點(diǎn)C為折線OAB上的動(dòng)點(diǎn),線段PCRtOAB分割成兩部分。

問:點(diǎn)C在什么位置時(shí),分割得到的三角形與RtOAB相似(注:在圖上畫出所有符合要求的線段PC,并求出相應(yīng)的點(diǎn)C的坐標(biāo)).

查看答案和解析>>

同步練習(xí)冊答案