【題目】已知等腰三角形的一邊是 4,周長(zhǎng)是 18,則它的腰長(zhǎng)為____

【答案】7.

【解析】

本題根據(jù)等腰三角形兩腰相等,題中又未指明邊長(zhǎng)為4時(shí)是底邊還是腰,故應(yīng)對(duì)此進(jìn)行分類討論,求出兩種情況下對(duì)應(yīng)的長(zhǎng)度,并確認(rèn)求出的長(zhǎng)度是否可構(gòu)成三角形.

當(dāng)?shù)走吺?/span>4時(shí),腰長(zhǎng)=18-4)÷2=7cm;

當(dāng)腰長(zhǎng)是4時(shí),底邊=18-4-4=10厘米

10>4+4

∴此情況不成立,舍去

故此三角形腰長(zhǎng)為7.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(2,2 ),N(1,0), ∠AON=60°,點(diǎn)M為平面直角坐標(biāo)系內(nèi)一點(diǎn),且MO=MA,則MN的最小值為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P(﹣2,3),PAy軸,PA=3,則點(diǎn)A的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,已知,點(diǎn)在邊上移動(dòng),連接,將多邊形沿直線折疊,得到多邊形,點(diǎn)、的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、

(1)當(dāng)恰好經(jīng)過點(diǎn)時(shí)(如圖1),求線段的長(zhǎng);

(2)若分別交邊、于點(diǎn),且(如圖2),求的面積;

(3)在點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)的過程中,求點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x+3)(x+n)=x2+mx21,則m的值為(  )

A.2B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,屬于必然事件的是( 。

A.明天我市下雨

B.拋一枚硬幣,正面朝上

C.走出校門,看到的第一輛汽車的牌照的末位數(shù)字是偶數(shù)

D.一個(gè)口袋中裝有2個(gè)紅球和一個(gè)白球,從中摸出2個(gè)球,其中有紅球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線 交x軸、y軸分別于點(diǎn)A、點(diǎn)B,將△AOB繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn) 得到△COD.直線CD交直線AB于點(diǎn)E,如圖1.

圖1
(1)求:直線CD的函數(shù)關(guān)系式.
(2)如圖2,連接OE,過點(diǎn)O作 交直線CD于點(diǎn)F,如圖2.

圖2
① 求證: =
② 求:點(diǎn)F的坐標(biāo).
(3)若點(diǎn)P是直線DC上一點(diǎn),點(diǎn)Q是x軸上一點(diǎn)(點(diǎn)Q不與點(diǎn)O重合),當(dāng)△DPQ和△DOC全等時(shí),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)直立的火柴盒在桌面上倒下,啟迪人們發(fā)現(xiàn)了勾股定理的一種新的證明方法.如圖2,火柴盒的一個(gè)側(cè)面ABCD倒下到AEFG的位置,連結(jié)CF,AB=a,BC=b,AC=c.

(1)請(qǐng)你結(jié)合圖1用文字和符號(hào)語(yǔ)言分別敘述勾股定理;
(2)請(qǐng)利用直角梯形BCFG的面積證明勾股定理: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一次函數(shù) ,下列結(jié)論錯(cuò)誤的是( )
A.函數(shù)值隨自變量增大而增大
B.函數(shù)圖像與x 軸正方向成45°角
C.函數(shù)圖像不經(jīng)過第四象限
D.函數(shù)圖像與x 軸交點(diǎn)坐標(biāo)是(0,6)

查看答案和解析>>

同步練習(xí)冊(cè)答案