【題目】如圖所示,在等邊三角形ABC中,點DBC邊上的一點,且BD2CD,PAD上的一點,∠CPD=∠ABC,求證:BPAD

【答案】詳見解析

【解析】

AHBCH, 因為△ABC為等邊三角形,BD2CD,即可得CD2DH.證明△DPC∽△DCA可得,又因為∠BDP=∠ADH,可證△DBP∽△DAH,由相似三角形的性質(zhì)即可得到∠DPB=∠DHA90°,BPAD.

證明:作AHBCH,如圖,

∵△ABC為等邊三角形,

BHCH,∠ABC=∠ACB60°,

BD2CD,

BHBD+CD)=CD,

DHBDBH2CDCDCD,即CD2DH,

∵∠CPD=∠ABC=∠ACD,

PDC=∠CDA

∴△DPC∽△DCA,

DPDA

CD2DHDPDA,

2CDDHDPDA

BDDHDPDA,

,

而∠BDP=∠ADH,

∴△DBP∽△DAH,

∴∠DPB=∠DHA90°

BPAD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自學(xué)下面材料后,解答問題.

分母中含有未知數(shù)的不等式叫分式不等式.如:等.那么如何求出它們的解集呢?

根據(jù)我們學(xué)過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負.其字母表達式為:若,則;若,則;若,,則;若,,則

1)反之:若,則;若,則_____________

2)根據(jù)上述規(guī)律,求不等式的解集.

3)直接寫出分式不等式的解集___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABACDBC的中點,DEABAC于點E,∠B34°

1)求∠BAD的度數(shù);

2)求證:AEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD是經(jīng)過BCA定點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且BEC=∠CFA=∠β

(1)若直線CD經(jīng)過BCA內(nèi)部,且E、F在射線CD上,

①若BCA=90°,∠β=90°,例如左邊圖,則BE CF,EF |BE - AF|

(填“>”,“<”,“=”);

②若0°<∠BCA<180°,且β+∠BCA=180°,例如中間圖,①中的兩個結(jié)論還成立嗎?并說明理由;

(2)如右邊圖,若直線CD經(jīng)過∠BCA外部,且β=∠BCA,請直接寫出線段EFBE、AF的數(shù)量關(guān)系(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,關(guān)于x的二次函數(shù)y=x2﹣x+m的圖象交x軸的正半軸于A,B兩點,交y軸的正半軸于C點,如果x=a時,y<0,那么關(guān)于x的一次函數(shù)y=(a﹣1)x+m的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,為邊上一動點,于點于點的中點,則的最小值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.

(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請你解答下列問題:

出廠價

成本價

排污處理費

甲種塑料

2100(元/噸)

800(元/噸)

200(元/噸)

乙種塑料

2400(元/噸)

1100(元/噸)

100(元/噸)

另每月還需支付設(shè)備管理、維護費20000

(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤分別為y1元和y2元,分別求出y1y2x的函數(shù)關(guān)系式(注:利潤=總收入-總支出);

(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時,獲得的總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用四根長度相同的木條制作了能夠活動的菱形學(xué)具,他先活動學(xué)具成為圖1所示菱形,并測得∠B=60°,接著活動學(xué)具成為圖2所示正方形,并測得對角線AC=40cm,則圖1中對角線AC的長為

A. 20 cm B. 30 cm C. 0 cm D. cm

查看答案和解析>>

同步練習(xí)冊答案