【題目】如圖,點C為線段AB上一點,△ACM,△CBN是等邊三角形,直線AN,MC交于點E,直線BM,CN交于點F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉(zhuǎn)90°,其他條件不變,在(2)中畫出符合要求的圖形,并判斷(1)(2)題中的兩結(jié)論是否依然成立.并說明理由.
【答案】
(1)證明:∵△ACM,△CBN是等邊三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
,
∴△CAN≌△MCB(SAS),
∴AN=BM
(2)證明:∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF為等腰三角形,
又∵∠ECF=60°,
∴△CEF為等邊三角形
(3)解:連接AN,BM,
∵△ACM、△CBN是等邊三角形,
∴AC=MC,BC=CN,∠ACM=∠BCN=60°,
∵∠ACB=90°,
∴∠ACN=∠MCB,
在△ACN和△MCB中,
,
∴△ACN≌△MCB(SAS),
∴AN=MB.
當把MC逆時針旋轉(zhuǎn)90°后,AC也旋轉(zhuǎn)了90°,因此∠ACB=90°,很顯然∠FCE>90°,因此三角形FCE絕對不可能是等邊三角形,
即結(jié)論1成立,結(jié)論2不成立.
【解析】(1)可通過全等三角形來得出簡單的線段相等,證明AN=BM,只要求出三角形ACN和MCB全等即可,這兩個三角形中,已知的條件有AC=MC,NC=CB,只要證明這兩組對應(yīng)邊的夾角相等即可,我們發(fā)現(xiàn)∠ACN和∠MCB都是等邊三角形的外角,因此它們都是120°,這樣就能得出兩三角形全等了.也就證出了AN=BM.(2)我們不難發(fā)現(xiàn)∠ECF=180﹣60﹣60=60°,因此只要我們再證得兩條邊相等即可得出三角形ECF是等邊三角形,可從EC,CF入手,由(1)的全等三角形我們知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此時三角形AEC≌三角形MCF,可得出CF=CE,于是我們再根據(jù)∠ECF=60°,便可得出三角形ECF是等邊三角形的結(jié)論.(3)判定結(jié)論1是否正確,也是通過證明三角形ACN和BCM來求得.這兩個三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此兩三角形就全等,AN=BM,結(jié)論1正確.如圖,當把MC逆時針旋轉(zhuǎn)90°后,AC也旋轉(zhuǎn)了90°,因此∠ACB=90°,很顯然∠FCE>90°,因此三角形FCE絕對不可能是等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MN與AD相交于點M,與BD相交于點N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD中,F是AB上一點,H是BC延長線上一點,連接FH,將△FBH沿FH翻折,使點B的對應(yīng)點E落在AD上,EH與CD交于點G,連接BG交FH于點M,當GB平分∠CGE時,BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上有A、B兩個點.
(1)如圖1,若AB=a,M是AB的中點,C為線段AB上的一點,且,則AC= ,CB= ,MC= (用含a的代數(shù)式表示);
(2)如圖2,若A、B、C三點對應(yīng)的數(shù)分別為﹣40,﹣10,20.
①當A、C兩點同時向左運動,同時B點向右運動,已知點A、B、C的速度分別為8個單位長度/秒、4個單位長度/秒、2個單位長度/秒,點M為線段AB的中點,點N為線段BC的中點,在B、C相遇前,在運動多少秒時恰好滿足:MB=3BN.
②現(xiàn)有動點P、Q都從C點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當點P移動到B點時,點Q才從C點出發(fā),并以每秒3個單位長度的速度向左移動,且當點P到達A點時,點Q也停止移動(若設(shè)點P的運動時間為t).當PQ兩點間的距離恰為18個單位時,求滿足條件的時間t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店三、四月份出售同一品牌各種規(guī)格空調(diào)銷售臺輸入下表,回答:
匹 | 匹 | 匹 | 匹 | |
三月 | ||||
四月 |
商店平均每月銷售空調(diào)________臺;
商店出售各種規(guī)格的空調(diào)中,眾數(shù)有________匹;
在研究六月份進貨時,商店經(jīng)理決定________(匹)的空調(diào)要多進,________(匹)的空調(diào)要少進.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1的坐標為( )
A.(﹣1, )
B.(﹣1, )或(﹣2,0)
C.( ,﹣1)或(0,﹣2)
D.( ,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了完成“舌尖上的中國”的錄制,節(jié)目組隨機抽查了某省“A.奶制品類,B.肉制品類,C.面制品類,D.豆制品類”四類特色美食若干種,將收集的數(shù)據(jù)整理并繪制成下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中信息完成下列問題:
(1)這次抽查了四類特色美食共 種,扇形統(tǒng)計圖中a= ,扇形統(tǒng)計圖中A部分圓心角的度數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)如果全省共有這四類特色美食120種,請你估計約有多少種屬于“豆制品類”?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)45+(﹣20);
(2)(﹣8)﹣(﹣1);
(3)|﹣10|+|+8|;
(4)(﹣12)﹣5+(﹣14)﹣(﹣39);
(5)0.47﹣4﹣(﹣1.53)﹣1;
(6)36﹣76+(﹣23)﹣105;
(7)﹣20+|﹣14|﹣(﹣18)﹣13;
(8)(+1.75)+(﹣)+(+)+(+1.05)+(﹣)+(+2.2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣ x2+bx﹣6的圖象與x軸交于一點A(2,0),與y軸交于點B,對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com