【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉,得到△ADE,旋轉角為α(0°<α<180°),點B的對應點為點D,點C的對應點為點E,連接BD,BE.
(1)如圖,當α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
溫馨提示:考生可以根據題意,在備用圖中補充圖形,以便作答.
【答案】
(1)
解:①∵△ABC繞點A順時針方向旋轉60°得到△ADE,
∴AB=AD,∠BAD=60°,
∴△ABD是等邊三角形;
②由①得△ABD是等邊三角形,
∴AB=BD,
∵△ABC繞點A順時針方向旋轉60°得到△ADE,
∴AC=AE,BC=DE,
又∵AC=BC,
∴EA=ED,
∴點B、E在AD的中垂線上,
∴BE是AD的中垂線,
∵點F在BE的延長線上,
∴BF⊥AD,AF=DF;
③由②知BF⊥AD,AF=DF,
∴AF=DF=3,
∵AE=AC=5,
∴EF=4,
∵在等邊三角形ABD中,BF=ABsin∠BAF=6× =3 ,
∴BE=BF﹣EF=3 ﹣4;
(2)
解:如圖所示,
∵∠DAG=∠ACB,∠DAE=∠BAC,
∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,
又∵∠DAG+∠DAE+∠BAE=180°,
∴∠BAE=∠ABC,
∵AC=BC=AE,
∴∠BAC=∠ABC,
∴∠BAE=∠BAC,
∴AB⊥CE,且CH=HE= CE,
∵AC=BC,
∴AH=BH= AB=3,
則CE=2CH=8,BE=5,
∴BE+CE=13.
【解析】(1)①由旋轉性質知AB=AD,∠BAD=60°即可得證;②由BA=BD、EA=ED根據中垂線性質即可得證;③分別求出BF、EF的長即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根據三線合一可得CE⊥AB、AC=5、AH=3,繼而知CE=2CH=8、BE=5,即可得答案.
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k﹣1)x+k2=0有兩個實數根x1 , x2 .
(1)求k的取值范圍;
(2)若|x1+x2|=x1x2﹣1,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數量比用3000元購進的甲種品牌空調數量多2 臺.
(1)求甲、乙兩種品牌空調的進貨價;
(2)該商場擬用不超過16000 元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請你幫該商場設計一種進貨方案,使得在售完這10 臺空調后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內一點,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=AC.
(1)求∠CDE的度數;
(2)若點M在DE上,且DC=DM,求證:ME=BD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F.
(1)求證:BE=CE;
(2)求∠CBF的度數;
(3)若AB=6,求 的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線y=2x+1與雙曲線y= 的一個交點為A(m,﹣3).
(1)求雙曲線的表達式;
(2)過動點P(n,0)(n<0)且垂直于x軸的直線與直線y=2x+1和雙曲線y= 的交點分別為B,C,當點B位于點C上方時,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有這樣一個問題:探究函數y= ﹣ x的圖象與性質. 小東根據學習函數的經驗,對函數y= ﹣ x的圖象與性質進行了探究.
下面是小東的探究過程,請補充完整,并解決相關問題:
(1)函數y= ﹣ x的自變量x的取值范圍是;
(2)下表是y與x的幾組對應值,求m的值;
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣1 | ﹣ |
| 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
|
|
|
|
| ﹣ | ﹣ | m | … |
(3)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據描出的點,畫出該函數的圖象;
(4)進一步探究發(fā)現,該函數圖象在第二象限內的最低點的坐標是(﹣2, ),結合函數的圖象,寫出該函數的其它性質(一條即可) .
(5)根據函數圖象估算方程 ﹣ x=2的根為 . (精確到0.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學相距20m,他們同時出發(fā),同向而行,甲在乙后,圖中L1、L2分別表示他們二人的路程與時間的關系,看圖回答下列問題:
(1)20s時甲跑了多少米?乙跑了多少米?
(2)甲用幾秒鐘可追上乙?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個點,∠APC=∠CPB=60°,AP,CB的延長線相交于點D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=2 ,求PD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com