【題目】如圖,四邊形ABCD是菱形,對角線AC、BD相交于點(diǎn)O,DH⊥AB于H,連接OH,
(1)求證:∠DHO=∠DCO.
(2)若OC=4,BD=6,求菱形ABCD的周長和面積.
【答案】
(1)證明:∵四邊形ABCD是菱形,
∴OD=OB,AB∥CD,BD⊥AC,
∵DH⊥AB,
∴DH⊥CD,∠DHB=90°,
∴OH為Rt△DHB的斜邊DB上的中線,
∴OH=OD=OB,
∴∠1=∠DHO,
∵DH⊥CD,
∴∠1+∠2=90°,
∵BD⊥AC,
∴∠2+∠DCO=90°,
∴∠1=∠DCO,
∴∠DHO=∠DCO
(2)解:∵四邊形ABCD是菱形,
∴OD=OB= BD=3,OA=OC=4,BD⊥AC,
在Rt△OCD中,CD= =5,
∴菱形ABCD的周長=4CD=20,
菱形ABCD的面積= ×6×8=24.
【解析】(1)先根據(jù)菱形的性質(zhì)得OD=OB,AB∥CD,BD⊥AC,則利用DH⊥AB得到DH⊥CD,∠DHB=90°,所以O(shè)H為Rt△DHB的斜邊DB上的中線,得到OH=OD=OB,利用等腰三角形的性質(zhì)得∠1=∠DHO,然后利用等角的余角相等證明結(jié)論;(2)先根據(jù)菱形的性質(zhì)得OD=OB= BD=3,OA=OC=4,BD⊥AC,再根據(jù)勾股定理計(jì)算出CD,然后利用菱形的性質(zhì)和面積公式求菱形ABCD的周長和面積.
【考點(diǎn)精析】掌握菱形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在四邊形ABCD中,∠B=∠D=90°,AE、CF分別平分∠BAD和∠BCD.試問直線AE、CF的位置關(guān)系如何?請說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在一次夏令營活動(dòng)中,小明從營地A點(diǎn)出發(fā),沿北偏東60°方向走了500 m到達(dá)B點(diǎn),然后再沿北偏西30°方向走了500m到達(dá)目的地C點(diǎn).
(1)求A、C兩點(diǎn)之間的距離;
(2)確定目的地C在營地A的什么方向?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 一個(gè)角的補(bǔ)角一定比這個(gè)角大
B. 一個(gè)角的余角一定比這個(gè)角小
C. 一對對頂角的兩條角平分線必在同一條直線上
D. 有公共頂點(diǎn)并且相等的兩個(gè)角是對頂角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015.北京市,第8題,3分)右圖是利用平面直角坐標(biāo)系畫出的故故宮博物院的主要建筑分布圖,若這個(gè)坐標(biāo)系分別以正東、正北方向?yàn)?/span>x軸,y軸的正方向.表示太和門的點(diǎn)的坐標(biāo)為(0,-1),表示九龍壁的點(diǎn)的坐標(biāo)為(4,1),表示下列宮殿的點(diǎn)的坐標(biāo)正確的是( )
A.景仁宮(4,2) B.養(yǎng)心殿(-2,3) C.保和殿(1,0) D.武英殿(-3.5,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果x-2=3,那么x=______,理由:根據(jù)等式的性質(zhì)______,在等式兩邊____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(遼寧丹東)如圖,直線OD與x軸所夾的銳角為30°,OA1的長為1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三角形,點(diǎn)A1、A2、A3…An+1在x軸的正半軸上依次排列,點(diǎn)B1、B2、B3…Bn在直線OD上依次排列,那么點(diǎn)Bn的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在小學(xué),我們知道正方形具有性質(zhì)“四條邊都相等,四個(gè)內(nèi)角都是直角”,請適當(dāng)利用上述知識,解答下列問題:
已知:如圖,在正方形ABCD中,AB=4,點(diǎn)G是射線AB上的一個(gè)動(dòng)點(diǎn),以DG為邊向右作正方形DGEF,作EH⊥AB于點(diǎn)H.
(1)填空:∠AGD+∠EGH=°;
(2)若點(diǎn)G在點(diǎn)B的右邊.
①求證:△DAG≌△GHE;
②試探索:EH﹣BG的值是否為定值,若是,請求出定值;若不是,請說明理由.
(3)連接EB,在G點(diǎn)的整個(gè)運(yùn)動(dòng)(點(diǎn)G與點(diǎn)A重合除外)過程中,求∠EBH的度數(shù);若點(diǎn)G是直線AB上的一個(gè)動(dòng)點(diǎn),其余條件不變,請直接寫出點(diǎn)A與點(diǎn)F之間距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com