【題目】若點(diǎn)P(x,y)在第三象限,且點(diǎn)P到x軸的距離為3,到y(tǒng)軸的距離為2,則點(diǎn)P的坐標(biāo)是( )
A.(﹣2,﹣3)
B.(﹣2,3)
C.(2,﹣3)
D.(2,3)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)A為半圓O直徑MN所在直線上一點(diǎn),射線AB垂直于MN,垂足為A,半圓繞M點(diǎn)順時(shí)針轉(zhuǎn)動(dòng),轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時(shí),圓心O′到射線AB的距離是 ;如圖2,當(dāng)a= °時(shí),半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動(dòng)30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時(shí),為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個(gè)量的關(guān)系,請你幫助他直接寫出這個(gè)關(guān)系;
cosα= (用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個(gè)交點(diǎn)時(shí),α的取值范圍是 ,并求出在這個(gè)變化過程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知tan∠EOF=2,點(diǎn)C在射線OF上,OC=12.點(diǎn)M是∠EOF內(nèi)一點(diǎn),MC⊥OF于點(diǎn)C,MC=4.在射線CF上取一點(diǎn)A,連結(jié)AM并延長交射線OE于點(diǎn)B,作BD⊥OF于點(diǎn)D.
(1)當(dāng)AC的長度為多少時(shí),△AMC和△BOD相似;
(2)當(dāng)點(diǎn)M恰好是線段AB中點(diǎn)時(shí),試判斷△AOB的形狀,并說明理由;
(3)連結(jié)BC.當(dāng)S△AMC=S△BOC時(shí),求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD的邊長為6,菱形EFGH的三個(gè)頂點(diǎn)E、G、H 分別在正方形ABCD邊AB、CD、DA上,AH=2.
(1)如圖1,當(dāng)DG=2,且點(diǎn)F在邊BC上時(shí).
求證:① △AHE≌△DGH;
② 菱形EFGH是正方形;
(2)如圖2,當(dāng)點(diǎn)F在正方形ABCD的外部時(shí),連接CF.
① 探究:點(diǎn)F到直線CD的距離是否發(fā)生變化?并說明理由;
② 設(shè)DG=x,△FCG的面積為S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動(dòng)后,6點(diǎn)朝上是必然事件
B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
C. “明天降雨的概率為”,表示明天有半天都在降雨
D. 了解一批電視機(jī)的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A'B',那么點(diǎn)A(-2,5)的對應(yīng)點(diǎn)A'的坐標(biāo)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD與⊙O相切,AD∥BC,連結(jié)OD,AC.
(1)求證:∠B=∠DCA;
(2)若 ,OD= , 求⊙O的半徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com