【題目】已知A=a2-2ab+b2B=a2+2ab+b2.

1)求A+B;

2)求A+B);

3)如果2A-3B+C=0,那么C的表達(dá)式是什么?

【答案】12a2+2b2;2a2+b2;3a2+10ab+b2;

【解析】

1)根據(jù)已知直接把AB相加即可;

2)把A+B直接代入即可求得;

3)先列出C的關(guān)系式C=3B2A,然后代入計(jì)算即可.

1A+B=a2-2ab+b2+ a2+2ab+b2=2a2+2b2

2(A+B)=(2a2+2b2)=a2+b2

32A-3B+C=0

2a2-2ab+b2)-3a2+2ab+b2+C=0

C=3a2+2ab+b2)-2a2-2ab+b2

= a2+10ab+b2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,a),B(b,12-b),C(2a-3,0),0<a<b<12,若OB平分∠AOC,且AB=BC,則a+b的值為( )

A. 9或12B. 9或11C. 10或11D. 10或12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某童裝網(wǎng)店批發(fā)商批發(fā)一種童裝,平均每天可售出件,每件盈利.經(jīng)調(diào)查,如果每件童裝降價(jià)元,那么平均每天就可多售出.

1)設(shè)每件童裝降價(jià)元,那么每天可售出多少件童裝?每件童裝的利潤是多少元?(用含的代數(shù)式表示)

2)為了迎接六一兒童節(jié),商家決定降價(jià)促銷、盡快減少庫存,又想保證平均每天盈利元,求每件童裝應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副直角三角尺的直角頂點(diǎn)C疊放在一起.

1)若∠DCE35°,∠ACB   ;若∠ACB140°,則∠DCE   ;

2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;

3)若保持三角尺BCE(其中∠B45°)不動,三角尺ACDCD邊與CB邊重合,然后將三角尺ACD(其中∠D30°)繞點(diǎn)C按逆時(shí)針方向任意轉(zhuǎn)動一個(gè)角度∠BCD

設(shè)∠BCDαα90°

①∠ACB能否是∠DCE4倍?若能求出α的值;若不能說明理由.

②當(dāng)這兩塊三角尺各有一條邊互相垂直時(shí)直接寫出α的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校草場一角,在長為b米,寬為a米的長方形場地中間,有并排兩個(gè)大小一樣的籃球場,兩個(gè)籃球場中間以及籃球場與長方形場地邊沿的距離都為c米.

1)用代數(shù)式表示這兩個(gè)籃球場的占地面積.

2)當(dāng)a=30,b=40c=3時(shí),計(jì)算出一個(gè)籃球場的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由幾個(gè)相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).

(1)請?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)向何體的主視圖和左視圖.

(2)根據(jù)三視圖;這個(gè)組合幾何體的表面積為 _________ 個(gè)平方單位.(包括底面積)

(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個(gè)平方單位.(包括底面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是一個(gè)正方體的表面展開圖,將對應(yīng)的正方體從如圖所示的位置依次翻到第1格、第2格、第3格,這時(shí)正方體朝上的一面上的字是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( 。

A. AE=CFB. BE=FDC. BF=DED. 1=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O是AB上的一點(diǎn),從O點(diǎn)引出射線OC、OE、OD,其中OE平分∠BOC.

(1)如圖1,若∠COD是直角,∠DOE=15°,求∠AOE的度數(shù);

(2)如圖1,若∠AOC=∠BOD,∠DOE=15°,求∠AOE的度數(shù);

(3)將圖1中的∠COD (∠COD仍是直角)繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖2的位置,若∠AOC=, ∠DOE=,請猜想之間存在什么樣的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案