【題目】如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=900,且EF交正方形外角的平分線CF于點(diǎn)F

1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);

2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)BC重合).

①AE=EF是否總成立?請(qǐng)給出證明;

在如圖2的直角坐標(biāo)系中,當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在拋物線上,求此時(shí)點(diǎn)F的坐標(biāo).

【答案】1△AGE△ECF2成立

【解析】

1)取AB的中點(diǎn)G,連接EG,利用ASA能得到△AGE△ECF全等.

2AB上截取AG=EC,由ASA證得△AGE≌△ECF即可證得AE=EF

過點(diǎn)FFH⊥x軸于H,根據(jù)FH=BE=CH設(shè)BH=a,則FH=a1,然后表示出點(diǎn)F的坐標(biāo),根據(jù)點(diǎn)F恰好落在拋物線上得到有關(guān)a的方程求得a值即可求得點(diǎn)F的坐標(biāo).

解:(1)如圖,取AB的中點(diǎn)G,連接EG,則△AGE△ECF全等.

2若點(diǎn)E在線段BC上滑動(dòng)時(shí)AE=EF總成立.證明如下:如圖,

AB上截取AG=EC,

∵AB=BC

∴BG=BE

∴△GBE是等腰直角三角形.

∴∠AGE=180°45°=135°

∵CF平分正方形的外角,

∴∠ECF=135°

∴∠AGE=∠ECF

∵∠BAE+∠AEB=∠CEF+∠AEB=90°

∴∠BAE=∠CEF

∴△AGE≌△ECFASA).

∴AE=EF

過點(diǎn)FFH⊥x軸于H,

知,FH=BE=CH,設(shè)BH=a,則FH=a1

點(diǎn)F的坐標(biāo)為Fa,a1).

點(diǎn)F恰好落在拋物線上,

∴a2=2(負(fù)值不合題意,舍去).

點(diǎn)F的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一個(gè)簡(jiǎn)易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長(zhǎng)為19 m),另外三邊利用學(xué),F(xiàn)有總長(zhǎng)38 m的鐵欄圍成.

(1)若圍成的面積為180 m2,試求出自行車車棚的長(zhǎng)和寬;

(2)能圍成面積為200 m2的自行車車棚嗎?如果能,請(qǐng)你給出設(shè)計(jì)方,如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點(diǎn),BCx軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿OABC(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過P作PMx軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊長(zhǎng)AD=3,AB=2,E為AB的中點(diǎn),F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點(diǎn)M,N,則MN的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:ab<0,b24a,0<a+b+c<2,0<b<1,當(dāng)x>﹣1時(shí),y>0,其中正確結(jié)論的個(gè)數(shù)是

A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上,,的中點(diǎn),連接并延長(zhǎng)交,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果三角形的兩個(gè)內(nèi)角滿足,那么稱這樣的三角形為“類直角三角形”.

嘗試運(yùn)用

1)如圖1,在中,,,,的平分線.

①證明是“類直角三角形”;

②試問在邊上是否存在點(diǎn)(異于點(diǎn)),使得也是“類直角三角形”?若存在,請(qǐng)求出的長(zhǎng);若不存在,請(qǐng)說明理由.

類比拓展

2)如圖2,內(nèi)接于,直徑,弦,點(diǎn)是弧上一動(dòng)點(diǎn)(包括端點(diǎn),),延長(zhǎng)至點(diǎn),連結(jié),且,當(dāng)是“類直角三角形”時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng),交ADE,交BA的延長(zhǎng)線于點(diǎn)F.

1)求證:.

2)如果,求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】六一兒童節(jié),小文到公園游玩.看到公園的一段人行彎道MN(不計(jì)寬度),如圖,它與兩面互相垂直的圍墻OP、OQ之間有一塊空地MPOQN(MP⊥OP,NQ⊥OQ),他發(fā)現(xiàn)彎道MN上任一點(diǎn)到兩邊圍墻的垂線段與圍墻所圍成的矩形的面積都相等,比如:A、B、C是彎道MN上的三點(diǎn),矩形ADOG、矩形BEOH、矩形CFOI的面積相等.愛好數(shù)學(xué)的他建立了平面直角坐標(biāo)系(如圖),圖中三塊陰影部分的面積分別記為S1、S2、S3,并測(cè)得S2=6(單位:平方米).OG=GH=HI.

(1)求S1和S3的值;

(2)設(shè)T(x,y)是彎道MN上的任一點(diǎn),寫出y關(guān)于x的函數(shù)關(guān)系式;

(3)公園準(zhǔn)備對(duì)區(qū)域MPOQN內(nèi)部進(jìn)行綠化改造,在橫坐標(biāo)、縱坐標(biāo)都是偶數(shù)的點(diǎn)處種植花木(區(qū)域邊界上的點(diǎn)除外),已知MP=2米,NQ=3米.問一共能種植多少棵花木?

查看答案和解析>>

同步練習(xí)冊(cè)答案