如圖,AB為⊙O的直徑,CD切⊙O于D,CD=AB,E為AB下方⊙O上一點(diǎn),且

(1)求證:四邊形ABCD是平行四邊形(2)若⊙O半徑為5,AE=8,求的正切值
(1)見解析(2)
(1)連結(jié)OD,
∵CD切⊙O于D,     ∴OD⊥DC---------1分
∵∠AED=45°      ∴即DO⊥AB---------1分    ∴AB∥CD---------1分      
∵CD=AB       ∴四邊形ABCD是平行四邊形---------1分
(2)連結(jié)BE     
∵AB為⊙O的直徑    ∴∠AEB=90°---------1分
∵⊙O的半徑為5,AE=8   ∴BE=6-------1分  ∴tan∠ADE=tan∠ABE=-----2分
(1)連結(jié)OD,求得OD⊥DC,DO⊥AB,得出結(jié)論
(2) (2)連接BE,則∠ADE=∠ABE,由AB是⊙O的直徑得到∠AEB=90°,而AB=2×3=6(cm).在Rt△ABE中,利用三角函數(shù)的定義即可求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB切⊙O于點(diǎn)A,OD⊥弦AC于點(diǎn)D,延長(zhǎng)OD,交AB于點(diǎn)B,
若∠O = 600,AC = 6cm,則AB =         cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓錐的底面半徑為9cm,母線長(zhǎng)為30cm,則此圓錐的側(cè)面展開扇形的圓心角度數(shù)為    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,是⊙的直徑上任意一點(diǎn),過點(diǎn)的垂線,的延長(zhǎng)線上一點(diǎn),聯(lián)結(jié)交⊙于點(diǎn),且

小題1:判斷直線與⊙的位置關(guān)系,并證明你的結(jié)論;
小題2:若,,過點(diǎn)A作的平行線交⊙于點(diǎn).求弦的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O中,直徑AB⊥弦CD于點(diǎn)H,E是⊙O上的點(diǎn),若∠BEC=25°,則∠BAD的度數(shù)為
A.65°B.50°C.25°D.12.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知相交兩圓的半徑分別為4和7,則它們的圓心距可能是(  。
A.11     B.6C.3     D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=10,BC=16,M為BC的中點(diǎn).⊙A的半徑為3,動(dòng)點(diǎn)O從點(diǎn)B出發(fā)沿BC方向以每秒1個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
小題1:當(dāng)以O(shè)B為半徑的⊙O與⊙A相切時(shí),求t的值;
小題2:探究:在線段BC上是否存在點(diǎn)O,使得⊙O與直線AM相切,且與⊙A相外切.若存在,求出此時(shí)t的值及相應(yīng)的⊙O的半徑;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,如果從半徑為的圓形紙片剪去圓周的一個(gè)扇形,將留下在扇形圍成一個(gè)圓錐(接縫處不重疊),那么這個(gè)圓錐的體積是__◆  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
小題1:判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論
小題2:若DE的長(zhǎng)為2,cosB=,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案